Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 60
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Evans
1
64 kgRogers
2
74 kgDyachenko
3
65 kgNibali
4
65 kgSabatini
6
74 kgGruzdev
7
78 kgMorajko
8
65 kgAskari
11
73 kgReid
15
62 kgSchulting
17
70 kgCrawford
21
59 kgMizbani
25
67 kgZonneveld
26
63 kgPoels
27
66 kgTang
30
62 kgIglinskiy
34
68 kgChan
35
70 kgWu
42
68 kgMilán
45
67 kg
1
64 kgRogers
2
74 kgDyachenko
3
65 kgNibali
4
65 kgSabatini
6
74 kgGruzdev
7
78 kgMorajko
8
65 kgAskari
11
73 kgReid
15
62 kgSchulting
17
70 kgCrawford
21
59 kgMizbani
25
67 kgZonneveld
26
63 kgPoels
27
66 kgTang
30
62 kgIglinskiy
34
68 kgChan
35
70 kgWu
42
68 kgMilán
45
67 kg
Weight (KG) →
Result →
78
59
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | EVANS Cadel | 64 |
2 | ROGERS Michael | 74 |
3 | DYACHENKO Alexandr | 65 |
4 | NIBALI Vincenzo | 65 |
6 | SABATINI Fabio | 74 |
7 | GRUZDEV Dmitriy | 78 |
8 | MORAJKO Jacek | 65 |
11 | ASKARI Hossein | 73 |
15 | REID Robin | 62 |
17 | SCHULTING Peter | 70 |
21 | CRAWFORD Jai | 59 |
25 | MIZBANI Ghader | 67 |
26 | ZONNEVELD Thijs | 63 |
27 | POELS Wout | 66 |
30 | TANG Wang Yip | 62 |
34 | IGLINSKIY Valentin | 68 |
35 | CHAN Chun Hing | 70 |
42 | WU Kin San | 68 |
45 | MILÁN Diego | 67 |