Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Norman Leth
1
75 kgHerklotz
2
68 kgHowson
3
68 kgWiśniowski
4
78 kgPhelan
5
73 kgVink
7
73 kgZabel
9
81 kgCort
10
68 kgYates
12
58 kgvan Baarle
13
78 kgSütterlin
15
78 kgSavitskiy
16
72 kgWerda
17
66 kgAlaphilippe
18
62 kgDibben
19
78 kgGroßschartner
21
64 kgAdams
22
66 kgvan der Poel
23
75 kgValgren
24
71 kg
1
75 kgHerklotz
2
68 kgHowson
3
68 kgWiśniowski
4
78 kgPhelan
5
73 kgVink
7
73 kgZabel
9
81 kgCort
10
68 kgYates
12
58 kgvan Baarle
13
78 kgSütterlin
15
78 kgSavitskiy
16
72 kgWerda
17
66 kgAlaphilippe
18
62 kgDibben
19
78 kgGroßschartner
21
64 kgAdams
22
66 kgvan der Poel
23
75 kgValgren
24
71 kg
Weight (KG) →
Result →
81
58
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | NORMAN LETH Lasse | 75 |
2 | HERKLOTZ Silvio | 68 |
3 | HOWSON Damien | 68 |
4 | WIŚNIOWSKI Łukasz | 78 |
5 | PHELAN Adam | 73 |
7 | VINK Michael | 73 |
9 | ZABEL Rick | 81 |
10 | CORT Magnus | 68 |
12 | YATES Simon | 58 |
13 | VAN BAARLE Dylan | 78 |
15 | SÜTTERLIN Jasha | 78 |
16 | SAVITSKIY Ivan | 72 |
17 | WERDA Maximilian | 66 |
18 | ALAPHILIPPE Julian | 62 |
19 | DIBBEN Jonathan | 78 |
21 | GROßSCHARTNER Felix | 64 |
22 | ADAMS Jens | 66 |
23 | VAN DER POEL David | 75 |
24 | VALGREN Michael | 71 |