Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -22.6 * weight + 2137
This means that on average for every extra kilogram weight a rider loses -22.6 positions in the result.
Vanderaerden
1
74 kgSørensen
4
70 kgFontanelli
5
68 kgKelly
8
77 kgPlanckaert
9
69 kgPeeters
11
76 kgGianetti
14
62 kgAbduzhaparov
16
72 kgPagnin
19
74 kgJärmann
990
73 kgRominger
990
65 kgFondriest
990
70 kgJaskuła
990
76 kgEarley
990
62 kgLelli
990
69 kgVerstrepen
990
66 kgLilholt
990
72 kgSaronni
990
65 kgBreukink
990
70 kgSergeant
990
76 kg
1
74 kgSørensen
4
70 kgFontanelli
5
68 kgKelly
8
77 kgPlanckaert
9
69 kgPeeters
11
76 kgGianetti
14
62 kgAbduzhaparov
16
72 kgPagnin
19
74 kgJärmann
990
73 kgRominger
990
65 kgFondriest
990
70 kgJaskuła
990
76 kgEarley
990
62 kgLelli
990
69 kgVerstrepen
990
66 kgLilholt
990
72 kgSaronni
990
65 kgBreukink
990
70 kgSergeant
990
76 kg
Weight (KG) →
Result →
77
62
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | VANDERAERDEN Eric | 74 |
4 | SØRENSEN Rolf | 70 |
5 | FONTANELLI Fabiano | 68 |
8 | KELLY Sean | 77 |
9 | PLANCKAERT Eddy | 69 |
11 | PEETERS Wilfried | 76 |
14 | GIANETTI Mauro | 62 |
16 | ABDUZHAPAROV Djamolidine | 72 |
19 | PAGNIN Roberto | 74 |
990 | JÄRMANN Rolf | 73 |
990 | ROMINGER Tony | 65 |
990 | FONDRIEST Maurizio | 70 |
990 | JASKUŁA Zenon | 76 |
990 | EARLEY Martin | 62 |
990 | LELLI Massimiliano | 69 |
990 | VERSTREPEN Johan | 66 |
990 | LILHOLT Søren | 72 |
990 | SARONNI Giuseppe | 65 |
990 | BREUKINK Erik | 70 |
990 | SERGEANT Marc | 76 |