Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 22.1 * weight - 993
This means that on average for every extra kilogram weight a rider loses 22.1 positions in the result.
Fondriest
3
70 kgLelli
4
69 kgRominger
5
65 kgEarley
6
62 kgGianetti
11
62 kgKelly
16
77 kgSørensen
18
70 kgJaskuła
19
76 kgJärmann
990
73 kgFontanelli
990
68 kgVerstrepen
990
66 kgVanderaerden
990
74 kgPlanckaert
990
69 kgPagnin
990
74 kgLilholt
990
72 kgSaronni
990
65 kgBreukink
990
70 kgSergeant
990
76 kg
3
70 kgLelli
4
69 kgRominger
5
65 kgEarley
6
62 kgGianetti
11
62 kgKelly
16
77 kgSørensen
18
70 kgJaskuła
19
76 kgJärmann
990
73 kgFontanelli
990
68 kgVerstrepen
990
66 kgVanderaerden
990
74 kgPlanckaert
990
69 kgPagnin
990
74 kgLilholt
990
72 kgSaronni
990
65 kgBreukink
990
70 kgSergeant
990
76 kg
Weight (KG) →
Result →
77
62
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | FONDRIEST Maurizio | 70 |
4 | LELLI Massimiliano | 69 |
5 | ROMINGER Tony | 65 |
6 | EARLEY Martin | 62 |
11 | GIANETTI Mauro | 62 |
16 | KELLY Sean | 77 |
18 | SØRENSEN Rolf | 70 |
19 | JASKUŁA Zenon | 76 |
990 | JÄRMANN Rolf | 73 |
990 | FONTANELLI Fabiano | 68 |
990 | VERSTREPEN Johan | 66 |
990 | VANDERAERDEN Eric | 74 |
990 | PLANCKAERT Eddy | 69 |
990 | PAGNIN Roberto | 74 |
990 | LILHOLT Søren | 72 |
990 | SARONNI Giuseppe | 65 |
990 | BREUKINK Erik | 70 |
990 | SERGEANT Marc | 76 |