Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3.3 * weight + 376
This means that on average for every extra kilogram weight a rider loses 3.3 positions in the result.
Planckaert
1
69 kgSørensen
2
70 kgLilholt
3
72 kgSaronni
4
65 kgPagnin
6
74 kgFontanelli
7
68 kgFondriest
8
70 kgJärmann
990
73 kgRominger
990
65 kgKelly
990
77 kgJaskuła
990
76 kgEarley
990
62 kgGianetti
990
62 kgLelli
990
69 kgVerstrepen
990
66 kgVanderaerden
990
74 kgBreukink
990
70 kgSergeant
990
76 kg
1
69 kgSørensen
2
70 kgLilholt
3
72 kgSaronni
4
65 kgPagnin
6
74 kgFontanelli
7
68 kgFondriest
8
70 kgJärmann
990
73 kgRominger
990
65 kgKelly
990
77 kgJaskuła
990
76 kgEarley
990
62 kgGianetti
990
62 kgLelli
990
69 kgVerstrepen
990
66 kgVanderaerden
990
74 kgBreukink
990
70 kgSergeant
990
76 kg
Weight (KG) →
Result →
77
62
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | PLANCKAERT Eddy | 69 |
2 | SØRENSEN Rolf | 70 |
3 | LILHOLT Søren | 72 |
4 | SARONNI Giuseppe | 65 |
6 | PAGNIN Roberto | 74 |
7 | FONTANELLI Fabiano | 68 |
8 | FONDRIEST Maurizio | 70 |
990 | JÄRMANN Rolf | 73 |
990 | ROMINGER Tony | 65 |
990 | KELLY Sean | 77 |
990 | JASKUŁA Zenon | 76 |
990 | EARLEY Martin | 62 |
990 | GIANETTI Mauro | 62 |
990 | LELLI Massimiliano | 69 |
990 | VERSTREPEN Johan | 66 |
990 | VANDERAERDEN Eric | 74 |
990 | BREUKINK Erik | 70 |
990 | SERGEANT Marc | 76 |