Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 15
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Sørensen
1
70 kgJeker
3
72 kgZberg
6
72 kgBrochard
7
68 kgRoche
8
74 kgEkimov
11
69 kgSimon
13
70 kgSpruch
15
68 kgImboden
16
70 kgBölts
19
73 kgRué
20
74 kgBruyneel
21
71 kgZanini
26
80 kgMadiot
32
68 kgSunderland
33
65 kgBallerini
34
78 kgWeltz
40
65 kgHodge
43
74 kgArgentin
45
66 kgBugno
46
68 kgSciandri
47
75 kgSkibby
49
70 kgKelly
50
77 kg
1
70 kgJeker
3
72 kgZberg
6
72 kgBrochard
7
68 kgRoche
8
74 kgEkimov
11
69 kgSimon
13
70 kgSpruch
15
68 kgImboden
16
70 kgBölts
19
73 kgRué
20
74 kgBruyneel
21
71 kgZanini
26
80 kgMadiot
32
68 kgSunderland
33
65 kgBallerini
34
78 kgWeltz
40
65 kgHodge
43
74 kgArgentin
45
66 kgBugno
46
68 kgSciandri
47
75 kgSkibby
49
70 kgKelly
50
77 kg
Weight (KG) →
Result →
80
65
1
50
# | Rider | Weight (KG) |
---|---|---|
1 | SØRENSEN Rolf | 70 |
3 | JEKER Fabian | 72 |
6 | ZBERG Beat | 72 |
7 | BROCHARD Laurent | 68 |
8 | ROCHE Stephen | 74 |
11 | EKIMOV Viatcheslav | 69 |
13 | SIMON François | 70 |
15 | SPRUCH Zbigniew | 68 |
16 | IMBODEN Heinz | 70 |
19 | BÖLTS Udo | 73 |
20 | RUÉ Gérard | 74 |
21 | BRUYNEEL Johan | 71 |
26 | ZANINI Stefano | 80 |
32 | MADIOT Marc | 68 |
33 | SUNDERLAND Scott | 65 |
34 | BALLERINI Franco | 78 |
40 | WELTZ Johnny | 65 |
43 | HODGE Stephen | 74 |
45 | ARGENTIN Moreno | 66 |
46 | BUGNO Gianni | 68 |
47 | SCIANDRI Maximilian | 75 |
49 | SKIBBY Jesper | 70 |
50 | KELLY Sean | 77 |