Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 3
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Freire
1
63 kgPetacchi
2
70 kgGuidi
3
73 kgVicioso
4
60 kgEisel
5
74 kgBrochard
6
68 kgMcEwen
7
67 kgDevolder
8
72 kgO'Grady
9
73 kgBertagnolli
10
63 kgHondo
11
73 kgVansevenant
12
65 kgHushovd
13
83 kgWegmann
14
60 kgMori
15
62 kgFörster
17
83 kgZberg
18
69 kgDi Luca
19
61 kgHalgand
20
67 kgPalumbo
21
61 kgVelo
23
70 kgBennati
24
71 kgPospyeyev
25
71 kgCadamuro
26
78 kg
1
63 kgPetacchi
2
70 kgGuidi
3
73 kgVicioso
4
60 kgEisel
5
74 kgBrochard
6
68 kgMcEwen
7
67 kgDevolder
8
72 kgO'Grady
9
73 kgBertagnolli
10
63 kgHondo
11
73 kgVansevenant
12
65 kgHushovd
13
83 kgWegmann
14
60 kgMori
15
62 kgFörster
17
83 kgZberg
18
69 kgDi Luca
19
61 kgHalgand
20
67 kgPalumbo
21
61 kgVelo
23
70 kgBennati
24
71 kgPospyeyev
25
71 kgCadamuro
26
78 kg
Weight (KG) →
Result →
83
60
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | FREIRE Óscar | 63 |
2 | PETACCHI Alessandro | 70 |
3 | GUIDI Fabrizio | 73 |
4 | VICIOSO Ángel | 60 |
5 | EISEL Bernhard | 74 |
6 | BROCHARD Laurent | 68 |
7 | MCEWEN Robbie | 67 |
8 | DEVOLDER Stijn | 72 |
9 | O'GRADY Stuart | 73 |
10 | BERTAGNOLLI Leonardo | 63 |
11 | HONDO Danilo | 73 |
12 | VANSEVENANT Wim | 65 |
13 | HUSHOVD Thor | 83 |
14 | WEGMANN Fabian | 60 |
15 | MORI Manuele | 62 |
17 | FÖRSTER Robert | 83 |
18 | ZBERG Markus | 69 |
19 | DI LUCA Danilo | 61 |
20 | HALGAND Patrice | 67 |
21 | PALUMBO Giuseppe | 61 |
23 | VELO Marco | 70 |
24 | BENNATI Daniele | 71 |
25 | POSPYEYEV Kyrylo | 71 |
26 | CADAMURO Simone | 78 |