Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
El Fares
1
62 kgPetacchi
2
70 kgBennati
3
71 kgDuma
5
64 kgBoonen
6
82 kgRodríguez
7
58 kgFarrar
8
73 kgKrivtsov
9
72 kgRebellin
10
63 kgCavendish
11
70 kgPaolini
12
66 kgO'Grady
13
73 kgLöfkvist
14
70 kgFernández
15
71 kgRollin
16
83 kgDi Luca
17
61 kgGarzelli
18
62 kg
1
62 kgPetacchi
2
70 kgBennati
3
71 kgDuma
5
64 kgBoonen
6
82 kgRodríguez
7
58 kgFarrar
8
73 kgKrivtsov
9
72 kgRebellin
10
63 kgCavendish
11
70 kgPaolini
12
66 kgO'Grady
13
73 kgLöfkvist
14
70 kgFernández
15
71 kgRollin
16
83 kgDi Luca
17
61 kgGarzelli
18
62 kg
Weight (KG) →
Result →
83
58
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | EL FARES Julien | 62 |
2 | PETACCHI Alessandro | 70 |
3 | BENNATI Daniele | 71 |
5 | DUMA Vladimir | 64 |
6 | BOONEN Tom | 82 |
7 | RODRÍGUEZ Joaquim | 58 |
8 | FARRAR Tyler | 73 |
9 | KRIVTSOV Yuriy | 72 |
10 | REBELLIN Davide | 63 |
11 | CAVENDISH Mark | 70 |
12 | PAOLINI Luca | 66 |
13 | O'GRADY Stuart | 73 |
14 | LÖFKVIST Thomas | 70 |
15 | FERNÁNDEZ Koldo | 71 |
16 | ROLLIN Dominique | 83 |
17 | DI LUCA Danilo | 61 |
18 | GARZELLI Stefano | 62 |