Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 61
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Bennati
1
71 kgGerdemann
2
71 kgBoonen
3
82 kgCaccia
4
70 kgRojas
5
70 kgFarrar
6
73 kgPérez
7
66 kgLastras
8
68 kgMartens
9
69 kgPetacchi
10
70 kgBreschel
11
70 kgModolo
12
67 kgEisel
14
74 kgPaolini
15
66 kgMcEwen
16
67 kgFlecha
17
72 kgHutarovich
18
71 kgGrabovskyy
19
69 kgBazayev
20
62 kgIgnatiev
21
67 kg
1
71 kgGerdemann
2
71 kgBoonen
3
82 kgCaccia
4
70 kgRojas
5
70 kgFarrar
6
73 kgPérez
7
66 kgLastras
8
68 kgMartens
9
69 kgPetacchi
10
70 kgBreschel
11
70 kgModolo
12
67 kgEisel
14
74 kgPaolini
15
66 kgMcEwen
16
67 kgFlecha
17
72 kgHutarovich
18
71 kgGrabovskyy
19
69 kgBazayev
20
62 kgIgnatiev
21
67 kg
Weight (KG) →
Result →
82
62
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BENNATI Daniele | 71 |
2 | GERDEMANN Linus | 71 |
3 | BOONEN Tom | 82 |
4 | CACCIA Diego | 70 |
5 | ROJAS José Joaquín | 70 |
6 | FARRAR Tyler | 73 |
7 | PÉREZ Alan | 66 |
8 | LASTRAS Pablo | 68 |
9 | MARTENS Paul | 69 |
10 | PETACCHI Alessandro | 70 |
11 | BRESCHEL Matti | 70 |
12 | MODOLO Sacha | 67 |
14 | EISEL Bernhard | 74 |
15 | PAOLINI Luca | 66 |
16 | MCEWEN Robbie | 67 |
17 | FLECHA Juan Antonio | 72 |
18 | HUTAROVICH Yauheni | 71 |
19 | GRABOVSKYY Dmytro | 69 |
20 | BAZAYEV Assan | 62 |
21 | IGNATIEV Mikhail | 67 |