Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 14
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Garzelli
1
62 kgBennati
2
71 kgEvans
3
64 kgScarponi
4
62 kgIgnatiev
5
67 kgGesink
6
70 kgVaugrenard
7
72 kgGasparotto
8
65 kgBoonen
9
82 kgMartens
10
69 kgIglinskiy
11
67 kgPérez
12
66 kgCaccia
13
70 kgRojas
14
70 kgBreschel
15
70 kgFarrar
16
73 kgLastras
17
68 kgPetacchi
18
70 kgModolo
19
67 kgKiryienka
20
69 kg
1
62 kgBennati
2
71 kgEvans
3
64 kgScarponi
4
62 kgIgnatiev
5
67 kgGesink
6
70 kgVaugrenard
7
72 kgGasparotto
8
65 kgBoonen
9
82 kgMartens
10
69 kgIglinskiy
11
67 kgPérez
12
66 kgCaccia
13
70 kgRojas
14
70 kgBreschel
15
70 kgFarrar
16
73 kgLastras
17
68 kgPetacchi
18
70 kgModolo
19
67 kgKiryienka
20
69 kg
Weight (KG) →
Result →
82
62
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | GARZELLI Stefano | 62 |
2 | BENNATI Daniele | 71 |
3 | EVANS Cadel | 64 |
4 | SCARPONI Michele | 62 |
5 | IGNATIEV Mikhail | 67 |
6 | GESINK Robert | 70 |
7 | VAUGRENARD Benoît | 72 |
8 | GASPAROTTO Enrico | 65 |
9 | BOONEN Tom | 82 |
10 | MARTENS Paul | 69 |
11 | IGLINSKIY Maxim | 67 |
12 | PÉREZ Alan | 66 |
13 | CACCIA Diego | 70 |
14 | ROJAS José Joaquín | 70 |
15 | BRESCHEL Matti | 70 |
16 | FARRAR Tyler | 73 |
17 | LASTRAS Pablo | 68 |
18 | PETACCHI Alessandro | 70 |
19 | MODOLO Sacha | 67 |
20 | KIRYIENKA Vasil | 69 |