Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Garzelli
1
62 kgBennati
2
71 kgEvans
3
64 kgPetacchi
4
70 kgScarponi
5
62 kgModolo
6
67 kgIgnatiev
7
67 kgGesink
8
70 kgVaugrenard
9
72 kgFarrar
10
73 kgGasparotto
11
65 kgBoasson Hagen
12
75 kgBoonen
13
82 kgMartens
14
69 kgEisel
15
74 kgRojas
16
70 kgIglinskiy
18
67 kgPérez
19
66 kgCaccia
20
70 kgBreschel
21
70 kgMcEwen
22
67 kg
1
62 kgBennati
2
71 kgEvans
3
64 kgPetacchi
4
70 kgScarponi
5
62 kgModolo
6
67 kgIgnatiev
7
67 kgGesink
8
70 kgVaugrenard
9
72 kgFarrar
10
73 kgGasparotto
11
65 kgBoasson Hagen
12
75 kgBoonen
13
82 kgMartens
14
69 kgEisel
15
74 kgRojas
16
70 kgIglinskiy
18
67 kgPérez
19
66 kgCaccia
20
70 kgBreschel
21
70 kgMcEwen
22
67 kg
Weight (KG) →
Result →
82
62
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | GARZELLI Stefano | 62 |
2 | BENNATI Daniele | 71 |
3 | EVANS Cadel | 64 |
4 | PETACCHI Alessandro | 70 |
5 | SCARPONI Michele | 62 |
6 | MODOLO Sacha | 67 |
7 | IGNATIEV Mikhail | 67 |
8 | GESINK Robert | 70 |
9 | VAUGRENARD Benoît | 72 |
10 | FARRAR Tyler | 73 |
11 | GASPAROTTO Enrico | 65 |
12 | BOASSON HAGEN Edvald | 75 |
13 | BOONEN Tom | 82 |
14 | MARTENS Paul | 69 |
15 | EISEL Bernhard | 74 |
16 | ROJAS José Joaquín | 70 |
18 | IGLINSKIY Maxim | 67 |
19 | PÉREZ Alan | 66 |
20 | CACCIA Diego | 70 |
21 | BRESCHEL Matti | 70 |
22 | MCEWEN Robbie | 67 |