Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Farrar
1
73 kgHaedo
2
73 kgPetacchi
3
70 kgRenshaw
4
74 kgAramendia
5
72 kgSesma
6
70 kgOss
7
75 kgSieberg
8
80 kgBoasson Hagen
9
75 kgGiordani
10
68 kgVan Avermaet
11
74 kgMcEwen
12
67 kgLorenzetto
13
71 kgMondory
14
66 kgKaisen
15
82 kgBoom
16
75 kgNavardauskas
17
79 kgBožič
18
70 kgWegmann
19
60 kgLangeveld
20
67 kg
1
73 kgHaedo
2
73 kgPetacchi
3
70 kgRenshaw
4
74 kgAramendia
5
72 kgSesma
6
70 kgOss
7
75 kgSieberg
8
80 kgBoasson Hagen
9
75 kgGiordani
10
68 kgVan Avermaet
11
74 kgMcEwen
12
67 kgLorenzetto
13
71 kgMondory
14
66 kgKaisen
15
82 kgBoom
16
75 kgNavardauskas
17
79 kgBožič
18
70 kgWegmann
19
60 kgLangeveld
20
67 kg
Weight (KG) →
Result →
82
60
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | FARRAR Tyler | 73 |
2 | HAEDO Juan José | 73 |
3 | PETACCHI Alessandro | 70 |
4 | RENSHAW Mark | 74 |
5 | ARAMENDIA Javier | 72 |
6 | SESMA Daniel | 70 |
7 | OSS Daniel | 75 |
8 | SIEBERG Marcel | 80 |
9 | BOASSON HAGEN Edvald | 75 |
10 | GIORDANI Leonardo | 68 |
11 | VAN AVERMAET Greg | 74 |
12 | MCEWEN Robbie | 67 |
13 | LORENZETTO Mirco | 71 |
14 | MONDORY Lloyd | 66 |
15 | KAISEN Olivier | 82 |
16 | BOOM Lars | 75 |
17 | NAVARDAUSKAS Ramūnas | 79 |
18 | BOŽIČ Borut | 70 |
19 | WEGMANN Fabian | 60 |
20 | LANGEVELD Sebastian | 67 |