Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Farrar
1
73 kgHaedo
2
73 kgPetacchi
3
70 kgRenshaw
4
74 kgScarponi
5
62 kgAramendia
6
72 kgSesma
7
70 kgCunego
8
58 kgŠtangelj
9
70 kgEvans
10
64 kgOss
11
75 kgSieberg
12
80 kgCherel
13
65 kgBasso
14
70 kgDi Luca
15
61 kgBoasson Hagen
16
75 kgGiordani
17
68 kgGesink
18
70 kgVan Avermaet
19
74 kgMcEwen
20
67 kgLang
21
77 kg
1
73 kgHaedo
2
73 kgPetacchi
3
70 kgRenshaw
4
74 kgScarponi
5
62 kgAramendia
6
72 kgSesma
7
70 kgCunego
8
58 kgŠtangelj
9
70 kgEvans
10
64 kgOss
11
75 kgSieberg
12
80 kgCherel
13
65 kgBasso
14
70 kgDi Luca
15
61 kgBoasson Hagen
16
75 kgGiordani
17
68 kgGesink
18
70 kgVan Avermaet
19
74 kgMcEwen
20
67 kgLang
21
77 kg
Weight (KG) →
Result →
80
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | FARRAR Tyler | 73 |
2 | HAEDO Juan José | 73 |
3 | PETACCHI Alessandro | 70 |
4 | RENSHAW Mark | 74 |
5 | SCARPONI Michele | 62 |
6 | ARAMENDIA Javier | 72 |
7 | SESMA Daniel | 70 |
8 | CUNEGO Damiano | 58 |
9 | ŠTANGELJ Gorazd | 70 |
10 | EVANS Cadel | 64 |
11 | OSS Daniel | 75 |
12 | SIEBERG Marcel | 80 |
13 | CHEREL Mikaël | 65 |
14 | BASSO Ivan | 70 |
15 | DI LUCA Danilo | 61 |
16 | BOASSON HAGEN Edvald | 75 |
17 | GIORDANI Leonardo | 68 |
18 | GESINK Robert | 70 |
19 | VAN AVERMAET Greg | 74 |
20 | MCEWEN Robbie | 67 |
21 | LANG Sebastian | 77 |