Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Cavendish
1
70 kgGoss
2
70 kgCiolek
3
75 kgSagan
4
78 kgGreipel
5
80 kgBelletti
6
72 kgBenedetti
7
63 kgFailli
8
65 kgFerrari
9
73 kgBodnar
10
77 kgHulsmans
11
75 kgKwiatkowski
12
68 kgCimolai
13
70 kgDémare
14
76 kgFarrar
15
73 kgHushovd
16
83 kgSbaragli
17
74 kgBravo
18
61 kgGeschke
19
64 kgSteegmans
20
82 kgTuft
21
77 kgAppollonio
22
67 kgVan Keirsbulck
23
89 kg
1
70 kgGoss
2
70 kgCiolek
3
75 kgSagan
4
78 kgGreipel
5
80 kgBelletti
6
72 kgBenedetti
7
63 kgFailli
8
65 kgFerrari
9
73 kgBodnar
10
77 kgHulsmans
11
75 kgKwiatkowski
12
68 kgCimolai
13
70 kgDémare
14
76 kgFarrar
15
73 kgHushovd
16
83 kgSbaragli
17
74 kgBravo
18
61 kgGeschke
19
64 kgSteegmans
20
82 kgTuft
21
77 kgAppollonio
22
67 kgVan Keirsbulck
23
89 kg
Weight (KG) →
Result →
89
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | CAVENDISH Mark | 70 |
2 | GOSS Matthew | 70 |
3 | CIOLEK Gerald | 75 |
4 | SAGAN Peter | 78 |
5 | GREIPEL André | 80 |
6 | BELLETTI Manuel | 72 |
7 | BENEDETTI Cesare | 63 |
8 | FAILLI Francesco | 65 |
9 | FERRARI Roberto | 73 |
10 | BODNAR Maciej | 77 |
11 | HULSMANS Kevin | 75 |
12 | KWIATKOWSKI Michał | 68 |
13 | CIMOLAI Davide | 70 |
14 | DÉMARE Arnaud | 76 |
15 | FARRAR Tyler | 73 |
16 | HUSHOVD Thor | 83 |
17 | SBARAGLI Kristian | 74 |
18 | BRAVO Garikoitz | 61 |
19 | GESCHKE Simon | 64 |
20 | STEEGMANS Gert | 82 |
21 | TUFT Svein | 77 |
22 | APPOLLONIO Davide | 67 |
23 | VAN KEIRSBULCK Guillaume | 89 |