Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Canola
1
66 kgContador
2
61 kgKennaugh
3
66 kgde la Cruz
4
66 kgLutsenko
5
74 kgTeklehaimanot
6
70 kgKing
7
68 kgBenedetti
8
63 kgFortin
9
78 kgGeschke
10
64 kgBauer
11
74 kgBrändle
12
80 kgMorabito
13
74 kgBoem
14
75 kgQuintana
15
58 kgMondory
16
66 kgDowsett
17
75 kgMoreno
18
59 kgThurau
19
73 kgJérôme
20
65 kgKreuziger
21
65 kgHansen
22
72 kgBelkov
23
71 kg
1
66 kgContador
2
61 kgKennaugh
3
66 kgde la Cruz
4
66 kgLutsenko
5
74 kgTeklehaimanot
6
70 kgKing
7
68 kgBenedetti
8
63 kgFortin
9
78 kgGeschke
10
64 kgBauer
11
74 kgBrändle
12
80 kgMorabito
13
74 kgBoem
14
75 kgQuintana
15
58 kgMondory
16
66 kgDowsett
17
75 kgMoreno
18
59 kgThurau
19
73 kgJérôme
20
65 kgKreuziger
21
65 kgHansen
22
72 kgBelkov
23
71 kg
Weight (KG) →
Result →
80
58
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | CANOLA Marco | 66 |
2 | CONTADOR Alberto | 61 |
3 | KENNAUGH Peter | 66 |
4 | DE LA CRUZ David | 66 |
5 | LUTSENKO Alexey | 74 |
6 | TEKLEHAIMANOT Daniel | 70 |
7 | KING Ben | 68 |
8 | BENEDETTI Cesare | 63 |
9 | FORTIN Filippo | 78 |
10 | GESCHKE Simon | 64 |
11 | BAUER Jack | 74 |
12 | BRÄNDLE Matthias | 80 |
13 | MORABITO Steve | 74 |
14 | BOEM Nicola | 75 |
15 | QUINTANA Nairo | 58 |
16 | MONDORY Lloyd | 66 |
17 | DOWSETT Alex | 75 |
18 | MORENO Daniel | 59 |
19 | THURAU Björn | 73 |
20 | JÉRÔME Vincent | 65 |
21 | KREUZIGER Roman | 65 |
22 | HANSEN Adam | 72 |
23 | BELKOV Maxim | 71 |