Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 5
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Debusschere
1
77 kgKonrad
2
64 kgSagan
3
78 kgBennett
4
73 kgPorsev
5
80 kgKeizer
6
72 kgFarrar
7
73 kgMalori
8
68 kgCort
9
68 kgKluge
10
83 kgCancellara
11
80 kgZardini
12
62 kgRuffoni
13
70 kgSalerno
14
64 kgVan Avermaet
15
74 kgDempster
16
77 kgBrändle
17
80 kgBodnar
18
77 kgRenshaw
19
74 kg
1
77 kgKonrad
2
64 kgSagan
3
78 kgBennett
4
73 kgPorsev
5
80 kgKeizer
6
72 kgFarrar
7
73 kgMalori
8
68 kgCort
9
68 kgKluge
10
83 kgCancellara
11
80 kgZardini
12
62 kgRuffoni
13
70 kgSalerno
14
64 kgVan Avermaet
15
74 kgDempster
16
77 kgBrändle
17
80 kgBodnar
18
77 kgRenshaw
19
74 kg
Weight (KG) →
Result →
83
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | DEBUSSCHERE Jens | 77 |
2 | KONRAD Patrick | 64 |
3 | SAGAN Peter | 78 |
4 | BENNETT Sam | 73 |
5 | PORSEV Alexander | 80 |
6 | KEIZER Martijn | 72 |
7 | FARRAR Tyler | 73 |
8 | MALORI Adriano | 68 |
9 | CORT Magnus | 68 |
10 | KLUGE Roger | 83 |
11 | CANCELLARA Fabian | 80 |
12 | ZARDINI Edoardo | 62 |
13 | RUFFONI Nicola | 70 |
14 | SALERNO Cristiano | 64 |
15 | VAN AVERMAET Greg | 74 |
16 | DEMPSTER Zak | 77 |
17 | BRÄNDLE Matthias | 80 |
18 | BODNAR Maciej | 77 |
19 | RENSHAW Mark | 74 |