Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Ganna
1
83 kgMerlier
2
76 kgEvenepoel
3
63 kgPogačar
4
66 kgKooij
5
72 kgGroves
6
76 kgAsgreen
7
75 kgSagan
8
78 kgDowsett
9
75 kgConsonni
10
60 kgGavazzi
11
65 kgArensman
12
68 kgBauhaus
13
75 kgLudvigsson
14
76 kgBallerini
15
71 kgvan Emden
16
78 kgNizzolo
17
72 kgBais
18
66 kgGuarnieri
19
80 kgBjerg
20
78 kgSobrero
21
63 kgGeoghegan Hart
22
65 kgVendrame
23
60 kg
1
83 kgMerlier
2
76 kgEvenepoel
3
63 kgPogačar
4
66 kgKooij
5
72 kgGroves
6
76 kgAsgreen
7
75 kgSagan
8
78 kgDowsett
9
75 kgConsonni
10
60 kgGavazzi
11
65 kgArensman
12
68 kgBauhaus
13
75 kgLudvigsson
14
76 kgBallerini
15
71 kgvan Emden
16
78 kgNizzolo
17
72 kgBais
18
66 kgGuarnieri
19
80 kgBjerg
20
78 kgSobrero
21
63 kgGeoghegan Hart
22
65 kgVendrame
23
60 kg
Weight (KG) →
Result →
83
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | GANNA Filippo | 83 |
2 | MERLIER Tim | 76 |
3 | EVENEPOEL Remco | 63 |
4 | POGAČAR Tadej | 66 |
5 | KOOIJ Olav | 72 |
6 | GROVES Kaden | 76 |
7 | ASGREEN Kasper | 75 |
8 | SAGAN Peter | 78 |
9 | DOWSETT Alex | 75 |
10 | CONSONNI Simone | 60 |
11 | GAVAZZI Francesco | 65 |
12 | ARENSMAN Thymen | 68 |
13 | BAUHAUS Phil | 75 |
14 | LUDVIGSSON Tobias | 76 |
15 | BALLERINI Davide | 71 |
16 | VAN EMDEN Jos | 78 |
17 | NIZZOLO Giacomo | 72 |
18 | BAIS Davide | 66 |
19 | GUARNIERI Jacopo | 80 |
20 | BJERG Mikkel | 78 |
21 | SOBRERO Matteo | 63 |
22 | GEOGHEGAN HART Tao | 65 |
23 | VENDRAME Andrea | 60 |