Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 171
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
Ayuso
1
65 kgPhilipsen
2
75 kgGanna
3
83 kgMilan
4
87 kgVernon
5
74 kgWærenskjold
6
92 kgMerlier
7
76 kgZingle
8
67 kgCapiot
9
69 kgČerný
11
75 kgTiberi
13
62 kgLonardi
14
70 kgVauquelin
15
69 kgQuartucci
16
64 kgVingegaard
17
58 kgGrégoire
19
64 kgLienhard
20
73 kgBais
21
66 kgGirmay
991
70 kg
1
65 kgPhilipsen
2
75 kgGanna
3
83 kgMilan
4
87 kgVernon
5
74 kgWærenskjold
6
92 kgMerlier
7
76 kgZingle
8
67 kgCapiot
9
69 kgČerný
11
75 kgTiberi
13
62 kgLonardi
14
70 kgVauquelin
15
69 kgQuartucci
16
64 kgVingegaard
17
58 kgGrégoire
19
64 kgLienhard
20
73 kgBais
21
66 kgGirmay
991
70 kg
Weight (KG) →
Result →
92
58
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | AYUSO Juan | 65 |
2 | PHILIPSEN Jasper | 75 |
3 | GANNA Filippo | 83 |
4 | MILAN Jonathan | 87 |
5 | VERNON Ethan | 74 |
6 | WÆRENSKJOLD Søren | 92 |
7 | MERLIER Tim | 76 |
8 | ZINGLE Axel | 67 |
9 | CAPIOT Amaury | 69 |
11 | ČERNÝ Josef | 75 |
13 | TIBERI Antonio | 62 |
14 | LONARDI Giovanni | 70 |
15 | VAUQUELIN Kévin | 69 |
16 | QUARTUCCI Lorenzo | 64 |
17 | VINGEGAARD Jonas | 58 |
19 | GRÉGOIRE Romain | 64 |
20 | LIENHARD Fabian | 73 |
21 | BAIS Davide | 66 |
991 | GIRMAY Biniam | 70 |