Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Milan
1
87 kgGanna
2
83 kgAyuso
3
65 kgZijlaard
4
73 kgPrice-Pejtersen
5
83 kgPenhoët
6
64 kgTiberi
7
62 kgKooij
8
72 kgConsonni
9
60 kgGee
11
72 kgBennett
12
73 kgCattaneo
13
67 kgStewart
14
66 kgWærenskjold
15
92 kgvan Dijke
16
74 kgdel Toro
17
64 kgCoquard
18
59 kgVauquelin
19
69 kgAdrià
20
64 kgZanoncello
21
64 kg
1
87 kgGanna
2
83 kgAyuso
3
65 kgZijlaard
4
73 kgPrice-Pejtersen
5
83 kgPenhoët
6
64 kgTiberi
7
62 kgKooij
8
72 kgConsonni
9
60 kgGee
11
72 kgBennett
12
73 kgCattaneo
13
67 kgStewart
14
66 kgWærenskjold
15
92 kgvan Dijke
16
74 kgdel Toro
17
64 kgCoquard
18
59 kgVauquelin
19
69 kgAdrià
20
64 kgZanoncello
21
64 kg
Weight (KG) →
Result →
92
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | MILAN Jonathan | 87 |
2 | GANNA Filippo | 83 |
3 | AYUSO Juan | 65 |
4 | ZIJLAARD Maikel | 73 |
5 | PRICE-PEJTERSEN Johan | 83 |
6 | PENHOËT Paul | 64 |
7 | TIBERI Antonio | 62 |
8 | KOOIJ Olav | 72 |
9 | CONSONNI Simone | 60 |
11 | GEE Derek | 72 |
12 | BENNETT Sam | 73 |
13 | CATTANEO Mattia | 67 |
14 | STEWART Jake | 66 |
15 | WÆRENSKJOLD Søren | 92 |
16 | VAN DIJKE Tim | 74 |
17 | DEL TORO Isaac | 64 |
18 | COQUARD Bryan | 59 |
19 | VAUQUELIN Kévin | 69 |
20 | ADRIÀ Roger | 64 |
21 | ZANONCELLO Enrico | 64 |