Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 18
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Taciak
4
68 kgVilla
6
71 kgAckermann
7
62 kgOffredo
9
69 kgCusin
11
65 kgFeillu
12
69 kgvan Emden
14
78 kgLeezer
19
76 kgKruijswijk
20
63 kgLang
22
73 kgHupond
23
65 kgBaldo
25
73 kgPliușchin
27
66 kgBonnafond
28
68 kgBérard
29
70 kgNissen
30
65 kgMalacarne
33
73 kgZahner
35
73 kgRoux
40
73 kg
4
68 kgVilla
6
71 kgAckermann
7
62 kgOffredo
9
69 kgCusin
11
65 kgFeillu
12
69 kgvan Emden
14
78 kgLeezer
19
76 kgKruijswijk
20
63 kgLang
22
73 kgHupond
23
65 kgBaldo
25
73 kgPliușchin
27
66 kgBonnafond
28
68 kgBérard
29
70 kgNissen
30
65 kgMalacarne
33
73 kgZahner
35
73 kgRoux
40
73 kg
Weight (KG) →
Result →
78
62
4
40
# | Rider | Weight (KG) |
---|---|---|
4 | TACIAK Mateusz | 68 |
6 | VILLA Romain | 71 |
7 | ACKERMANN Silvère | 62 |
9 | OFFREDO Yoann | 69 |
11 | CUSIN Rémi | 65 |
12 | FEILLU Brice | 69 |
14 | VAN EMDEN Jos | 78 |
19 | LEEZER Tom | 76 |
20 | KRUIJSWIJK Steven | 63 |
22 | LANG Pirmin | 73 |
23 | HUPOND Thierry | 65 |
25 | BALDO Nicolas | 73 |
27 | PLIUȘCHIN Alexandr | 66 |
28 | BONNAFOND Guillaume | 68 |
29 | BÉRARD Julien | 70 |
30 | NISSEN Søren | 65 |
33 | MALACARNE Gael | 73 |
35 | ZAHNER Simon | 73 |
40 | ROUX Anthony | 73 |