Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 15
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Taciak
3
68 kgVilla
4
71 kgOffredo
5
69 kgAckermann
7
62 kgCusin
8
65 kgvan Emden
13
78 kgLeezer
18
76 kgKruijswijk
19
63 kgLang
22
73 kgBaldo
24
73 kgPliușchin
26
66 kgBonnafond
27
68 kgBérard
28
70 kgTanner
29
70 kgNissen
30
65 kgFeillu
32
69 kgMalacarne
35
73 kgRoux
41
73 kg
3
68 kgVilla
4
71 kgOffredo
5
69 kgAckermann
7
62 kgCusin
8
65 kgvan Emden
13
78 kgLeezer
18
76 kgKruijswijk
19
63 kgLang
22
73 kgBaldo
24
73 kgPliușchin
26
66 kgBonnafond
27
68 kgBérard
28
70 kgTanner
29
70 kgNissen
30
65 kgFeillu
32
69 kgMalacarne
35
73 kgRoux
41
73 kg
Weight (KG) →
Result →
78
62
3
41
# | Rider | Weight (KG) |
---|---|---|
3 | TACIAK Mateusz | 68 |
4 | VILLA Romain | 71 |
5 | OFFREDO Yoann | 69 |
7 | ACKERMANN Silvère | 62 |
8 | CUSIN Rémi | 65 |
13 | VAN EMDEN Jos | 78 |
18 | LEEZER Tom | 76 |
19 | KRUIJSWIJK Steven | 63 |
22 | LANG Pirmin | 73 |
24 | BALDO Nicolas | 73 |
26 | PLIUȘCHIN Alexandr | 66 |
27 | BONNAFOND Guillaume | 68 |
28 | BÉRARD Julien | 70 |
29 | TANNER David | 70 |
30 | NISSEN Søren | 65 |
32 | FEILLU Brice | 69 |
35 | MALACARNE Gael | 73 |
41 | ROUX Anthony | 73 |