Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 8
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Kelderman
1
65 kgHesselbarth
2
65 kgLaengen
3
79 kgSerry
5
66 kgKoch
6
69 kgBennett
7
58 kgDegenkolb
8
82 kgTeklehaimanot
10
70 kgVandyck
11
64 kgPieters
12
73 kgFumeaux
20
61 kgČanecký
22
72 kgWarbasse
23
67 kgJarrier
25
69 kgSaggiorato
26
58 kgThill
28
73 kgBrun
29
73 kgMatheou
30
73 kgKreder
32
71 kgRathe
44
74 kgHavik
46
66 kg
1
65 kgHesselbarth
2
65 kgLaengen
3
79 kgSerry
5
66 kgKoch
6
69 kgBennett
7
58 kgDegenkolb
8
82 kgTeklehaimanot
10
70 kgVandyck
11
64 kgPieters
12
73 kgFumeaux
20
61 kgČanecký
22
72 kgWarbasse
23
67 kgJarrier
25
69 kgSaggiorato
26
58 kgThill
28
73 kgBrun
29
73 kgMatheou
30
73 kgKreder
32
71 kgRathe
44
74 kgHavik
46
66 kg
Weight (KG) →
Result →
82
58
1
46
# | Rider | Weight (KG) |
---|---|---|
1 | KELDERMAN Wilco | 65 |
2 | HESSELBARTH David | 65 |
3 | LAENGEN Vegard Stake | 79 |
5 | SERRY Pieter | 66 |
6 | KOCH Michel | 69 |
7 | BENNETT George | 58 |
8 | DEGENKOLB John | 82 |
10 | TEKLEHAIMANOT Daniel | 70 |
11 | VANDYCK Niels | 64 |
12 | PIETERS Sibrecht | 73 |
20 | FUMEAUX Jonathan | 61 |
22 | ČANECKÝ Marek | 72 |
23 | WARBASSE Larry | 67 |
25 | JARRIER Benoît | 69 |
26 | SAGGIORATO Mirco | 58 |
28 | THILL Tom | 73 |
29 | BRUN Frederic | 73 |
30 | MATHEOU Romain | 73 |
32 | KREDER Wesley | 71 |
44 | RATHE Jacob | 74 |
46 | HAVIK Yoeri | 66 |