Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Walsleben
1
66 kgEwan
2
69 kgNauleau
3
67 kgMartin
4
55 kgZahner
5
73 kgPerez
7
70 kgShimizu
9
60 kgLamoisson
11
69 kgMeisen
14
62 kgQuéméneur
18
67 kgKrieger
19
71 kgOrjuela
21
60 kgTusveld
22
70 kgVan Meirhaeghe
25
71 kgKirsch
29
78 kgHerklotz
31
68 kgHavik
33
66 kgTeuns
34
64 kgKozhatayev
38
62 kgCampenaerts
39
68 kgMühlberger
40
64 kgMager
41
60 kg
1
66 kgEwan
2
69 kgNauleau
3
67 kgMartin
4
55 kgZahner
5
73 kgPerez
7
70 kgShimizu
9
60 kgLamoisson
11
69 kgMeisen
14
62 kgQuéméneur
18
67 kgKrieger
19
71 kgOrjuela
21
60 kgTusveld
22
70 kgVan Meirhaeghe
25
71 kgKirsch
29
78 kgHerklotz
31
68 kgHavik
33
66 kgTeuns
34
64 kgKozhatayev
38
62 kgCampenaerts
39
68 kgMühlberger
40
64 kgMager
41
60 kg
Weight (KG) →
Result →
78
55
1
41
# | Rider | Weight (KG) |
---|---|---|
1 | WALSLEBEN Philipp | 66 |
2 | EWAN Caleb | 69 |
3 | NAULEAU Bryan | 67 |
4 | MARTIN Guillaume | 55 |
5 | ZAHNER Simon | 73 |
7 | PEREZ Anthony | 70 |
9 | SHIMIZU Miyataka | 60 |
11 | LAMOISSON Morgan | 69 |
14 | MEISEN Marcel | 62 |
18 | QUÉMÉNEUR Perrig | 67 |
19 | KRIEGER Alexander | 71 |
21 | ORJUELA Fernando | 60 |
22 | TUSVELD Martijn | 70 |
25 | VAN MEIRHAEGHE Jef | 71 |
29 | KIRSCH Alex | 78 |
31 | HERKLOTZ Silvio | 68 |
33 | HAVIK Yoeri | 66 |
34 | TEUNS Dylan | 64 |
38 | KOZHATAYEV Bakhtiyar | 62 |
39 | CAMPENAERTS Victor | 68 |
40 | MÜHLBERGER Gregor | 64 |
41 | MAGER Christian | 60 |