Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Walsleben
1
66 kgHerklotz
2
68 kgNauleau
3
67 kgMartin
4
55 kgZahner
5
73 kgPerez
6
70 kgParra
8
51 kgShimizu
10
60 kgMeisen
13
62 kgHirt
15
62 kgQuéméneur
19
67 kgKrieger
21
71 kgMager
22
60 kgOrjuela
23
60 kgKozhatayev
25
62 kgTusveld
26
70 kgVan Meirhaeghe
28
71 kgKirsch
31
78 kgTratnik
33
67 kgTeuns
35
64 kgMühlberger
39
64 kgCampenaerts
40
68 kg
1
66 kgHerklotz
2
68 kgNauleau
3
67 kgMartin
4
55 kgZahner
5
73 kgPerez
6
70 kgParra
8
51 kgShimizu
10
60 kgMeisen
13
62 kgHirt
15
62 kgQuéméneur
19
67 kgKrieger
21
71 kgMager
22
60 kgOrjuela
23
60 kgKozhatayev
25
62 kgTusveld
26
70 kgVan Meirhaeghe
28
71 kgKirsch
31
78 kgTratnik
33
67 kgTeuns
35
64 kgMühlberger
39
64 kgCampenaerts
40
68 kg
Weight (KG) →
Result →
78
51
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | WALSLEBEN Philipp | 66 |
2 | HERKLOTZ Silvio | 68 |
3 | NAULEAU Bryan | 67 |
4 | MARTIN Guillaume | 55 |
5 | ZAHNER Simon | 73 |
6 | PEREZ Anthony | 70 |
8 | PARRA Heiner Rodrigo | 51 |
10 | SHIMIZU Miyataka | 60 |
13 | MEISEN Marcel | 62 |
15 | HIRT Jan | 62 |
19 | QUÉMÉNEUR Perrig | 67 |
21 | KRIEGER Alexander | 71 |
22 | MAGER Christian | 60 |
23 | ORJUELA Fernando | 60 |
25 | KOZHATAYEV Bakhtiyar | 62 |
26 | TUSVELD Martijn | 70 |
28 | VAN MEIRHAEGHE Jef | 71 |
31 | KIRSCH Alex | 78 |
33 | TRATNIK Jan | 67 |
35 | TEUNS Dylan | 64 |
39 | MÜHLBERGER Gregor | 64 |
40 | CAMPENAERTS Victor | 68 |