Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 30
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Di Grégorio
1
67 kgGuerin
2
64 kgLindeman
4
69 kgGroen
5
70.5 kgWalsleben
6
66 kgHirt
8
62 kgDumourier
9
60 kgLavieu
10
60 kgPanassenko
11
69 kgvan der Poel
13
75 kgHaig
14
67 kgVermeulen
16
66 kgHník
17
57 kgPower
18
68 kgLe Gac
19
70 kgEl Fares
20
62 kgImhof
21
80 kgMartin
22
55 kgSchachmann
26
71 kgPerez
27
70 kgPacher
28
62 kgBuchmann
29
59 kgSaggiorato
30
58 kg
1
67 kgGuerin
2
64 kgLindeman
4
69 kgGroen
5
70.5 kgWalsleben
6
66 kgHirt
8
62 kgDumourier
9
60 kgLavieu
10
60 kgPanassenko
11
69 kgvan der Poel
13
75 kgHaig
14
67 kgVermeulen
16
66 kgHník
17
57 kgPower
18
68 kgLe Gac
19
70 kgEl Fares
20
62 kgImhof
21
80 kgMartin
22
55 kgSchachmann
26
71 kgPerez
27
70 kgPacher
28
62 kgBuchmann
29
59 kgSaggiorato
30
58 kg
Weight (KG) →
Result →
80
55
1
30
# | Rider | Weight (KG) |
---|---|---|
1 | DI GRÉGORIO Rémy | 67 |
2 | GUERIN Alexis | 64 |
4 | LINDEMAN Bert-Jan | 69 |
5 | GROEN Ike | 70.5 |
6 | WALSLEBEN Philipp | 66 |
8 | HIRT Jan | 62 |
9 | DUMOURIER Florian | 60 |
10 | LAVIEU Antoine | 60 |
11 | PANASSENKO Nikita | 69 |
13 | VAN DER POEL Mathieu | 75 |
14 | HAIG Jack | 67 |
16 | VERMEULEN Alexey | 66 |
17 | HNÍK Karel | 57 |
18 | POWER Robert | 68 |
19 | LE GAC Olivier | 70 |
20 | EL FARES Julien | 62 |
21 | IMHOF Claudio | 80 |
22 | MARTIN Guillaume | 55 |
26 | SCHACHMANN Maximilian | 71 |
27 | PEREZ Anthony | 70 |
28 | PACHER Quentin | 62 |
29 | BUCHMANN Emanuel | 59 |
30 | SAGGIORATO Mirco | 58 |