Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Thevenot
4
69 kgDuijn
5
73 kgvan der Poel
8
75 kgMaldonado
9
57 kgCalmejane
10
70 kgBudding
11
74 kgLindeman
12
69 kgPeyskens
13
69 kgLe Gac
14
70 kgWalsleben
15
66 kgHofstetter
16
66 kgGuerin
17
64 kgKoch
19
75 kgSpokes
20
63 kgBizhigitov
21
76 kgZangerle
24
63 kgMcLay
25
72 kg
4
69 kgDuijn
5
73 kgvan der Poel
8
75 kgMaldonado
9
57 kgCalmejane
10
70 kgBudding
11
74 kgLindeman
12
69 kgPeyskens
13
69 kgLe Gac
14
70 kgWalsleben
15
66 kgHofstetter
16
66 kgGuerin
17
64 kgKoch
19
75 kgSpokes
20
63 kgBizhigitov
21
76 kgZangerle
24
63 kgMcLay
25
72 kg
Weight (KG) →
Result →
76
57
4
25
# | Rider | Weight (KG) |
---|---|---|
4 | THEVENOT Guillaume | 69 |
5 | DUIJN Huub | 73 |
8 | VAN DER POEL Mathieu | 75 |
9 | MALDONADO Anthony | 57 |
10 | CALMEJANE Lilian | 70 |
11 | BUDDING Martijn | 74 |
12 | LINDEMAN Bert-Jan | 69 |
13 | PEYSKENS Dimitri | 69 |
14 | LE GAC Olivier | 70 |
15 | WALSLEBEN Philipp | 66 |
16 | HOFSTETTER Hugo | 66 |
17 | GUERIN Alexis | 64 |
19 | KOCH Jonas | 75 |
20 | SPOKES Samuel | 63 |
21 | BIZHIGITOV Zhandos | 76 |
24 | ZANGERLE Joel | 63 |
25 | MCLAY Daniel | 72 |