Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Calmejane
1
70 kgGrellier
2
65 kgMamykin
3
62 kgWalsleben
4
66 kgDe Plus
6
67 kgBaestaens
7
68 kgPöstlberger
8
70 kgLaengen
9
79 kgvan der Poel
11
75 kgDamuseau
13
64 kgPacher
14
62 kgKoch
15
75 kgOomen
17
65 kgHaig
18
67 kgPerez
19
70 kgLunke
20
69 kgRodriguez
21
75 kg
1
70 kgGrellier
2
65 kgMamykin
3
62 kgWalsleben
4
66 kgDe Plus
6
67 kgBaestaens
7
68 kgPöstlberger
8
70 kgLaengen
9
79 kgvan der Poel
11
75 kgDamuseau
13
64 kgPacher
14
62 kgKoch
15
75 kgOomen
17
65 kgHaig
18
67 kgPerez
19
70 kgLunke
20
69 kgRodriguez
21
75 kg
Weight (KG) →
Result →
79
62
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | CALMEJANE Lilian | 70 |
2 | GRELLIER Fabien | 65 |
3 | MAMYKIN Matvey | 62 |
4 | WALSLEBEN Philipp | 66 |
6 | DE PLUS Laurens | 67 |
7 | BAESTAENS Vincent | 68 |
8 | PÖSTLBERGER Lukas | 70 |
9 | LAENGEN Vegard Stake | 79 |
11 | VAN DER POEL Mathieu | 75 |
13 | DAMUSEAU Thomas | 64 |
14 | PACHER Quentin | 62 |
15 | KOCH Jonas | 75 |
17 | OOMEN Sam | 65 |
18 | HAIG Jack | 67 |
19 | PEREZ Anthony | 70 |
20 | LUNKE Sindre | 69 |
21 | RODRIGUEZ José Luis | 75 |