Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Dupont
1
72 kgGodrie
2
74 kgBaestaens
3
68 kgFortin
4
78 kgKrieger
5
71 kgSpengler
6
78 kgDlamini
8
66 kgPlanckaert
9
71 kgWhite
10
70 kgTouzé
11
69 kgJurado
13
68 kgTrarieux
14
71 kgVan Breussegem
15
68 kgDi Sante
16
62 kgChristian
17
72 kgvan der Poel
18
75 kgVan Zummeren
19
73 kgTeychenne
21
68 kg
1
72 kgGodrie
2
74 kgBaestaens
3
68 kgFortin
4
78 kgKrieger
5
71 kgSpengler
6
78 kgDlamini
8
66 kgPlanckaert
9
71 kgWhite
10
70 kgTouzé
11
69 kgJurado
13
68 kgTrarieux
14
71 kgVan Breussegem
15
68 kgDi Sante
16
62 kgChristian
17
72 kgvan der Poel
18
75 kgVan Zummeren
19
73 kgTeychenne
21
68 kg
Weight (KG) →
Result →
78
62
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | DUPONT Timothy | 72 |
2 | GODRIE Stan | 74 |
3 | BAESTAENS Vincent | 68 |
4 | FORTIN Filippo | 78 |
5 | KRIEGER Alexander | 71 |
6 | SPENGLER Lukas | 78 |
8 | DLAMINI Nic | 66 |
9 | PLANCKAERT Edward | 71 |
10 | WHITE Curtis | 70 |
11 | TOUZÉ Damien | 69 |
13 | JURADO Christofer Robín | 68 |
14 | TRARIEUX Julien | 71 |
15 | VAN BREUSSEGEM Elias | 68 |
16 | DI SANTE Antonio | 62 |
17 | CHRISTIAN Mark | 72 |
18 | VAN DER POEL David | 75 |
19 | VAN ZUMMEREN Stef | 73 |
21 | TEYCHENNE Mathieu | 68 |