Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Guillonnet
1
69 kgO'Loughlin
2
72 kgBouchard
3
63 kgHirschi
4
61 kgPidcock
5
58 kgMcNulty
6
69 kgThalmann
7
61 kgOrrico
8
70 kgRutsch
9
82 kgŤoupalík
10
65 kgMaciejuk
11
78 kgČerný
12
75 kgPronskiy
13
58 kgRekita
14
70 kgSkjerping
16
71 kgHagen
17
65 kgSchelling
18
61 kgBostock
19
69 kgVangstad
20
70 kgTeggart
23
63 kgMeiler
24
65 kgVoisard
25
56 kg
1
69 kgO'Loughlin
2
72 kgBouchard
3
63 kgHirschi
4
61 kgPidcock
5
58 kgMcNulty
6
69 kgThalmann
7
61 kgOrrico
8
70 kgRutsch
9
82 kgŤoupalík
10
65 kgMaciejuk
11
78 kgČerný
12
75 kgPronskiy
13
58 kgRekita
14
70 kgSkjerping
16
71 kgHagen
17
65 kgSchelling
18
61 kgBostock
19
69 kgVangstad
20
70 kgTeggart
23
63 kgMeiler
24
65 kgVoisard
25
56 kg
Weight (KG) →
Result →
82
56
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | GUILLONNET Adrien | 69 |
2 | O'LOUGHLIN Michael | 72 |
3 | BOUCHARD Geoffrey | 63 |
4 | HIRSCHI Marc | 61 |
5 | PIDCOCK Thomas | 58 |
6 | MCNULTY Brandon | 69 |
7 | THALMANN Roland | 61 |
8 | ORRICO Davide | 70 |
9 | RUTSCH Jonas | 82 |
10 | ŤOUPALÍK Adam | 65 |
11 | MACIEJUK Filip | 78 |
12 | ČERNÝ Josef | 75 |
13 | PRONSKIY Vadim | 58 |
14 | REKITA Szymon | 70 |
16 | SKJERPING Kristoffer | 71 |
17 | HAGEN Carl Fredrik | 65 |
18 | SCHELLING Patrick | 61 |
19 | BOSTOCK Matthew | 69 |
20 | VANGSTAD Andreas | 70 |
23 | TEGGART Matthew | 63 |
24 | MEILER Lukas | 65 |
25 | VOISARD Yannis | 56 |