Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
van der Poel
1
75 kgTeggart
2
63 kgStedman
3
54 kgSchelling
4
66 kgMoreno
5
59 kgBouchard
6
63 kgRüegg
7
66 kgHirschi
9
61 kgMcNulty
12
69 kgRutsch
13
82 kgO'Loughlin
14
72 kgGuillonnet
15
69 kgMaciejuk
17
78 kgBostock
18
69 kgStork
19
65 kgPronskiy
20
58 kgVermeersch
21
68 kgDonovan
22
70 kgPidcock
24
58 kgBanzer
25
56 kgVangstad
26
70 kgFranz
27
62 kgThalmann
29
61 kg
1
75 kgTeggart
2
63 kgStedman
3
54 kgSchelling
4
66 kgMoreno
5
59 kgBouchard
6
63 kgRüegg
7
66 kgHirschi
9
61 kgMcNulty
12
69 kgRutsch
13
82 kgO'Loughlin
14
72 kgGuillonnet
15
69 kgMaciejuk
17
78 kgBostock
18
69 kgStork
19
65 kgPronskiy
20
58 kgVermeersch
21
68 kgDonovan
22
70 kgPidcock
24
58 kgBanzer
25
56 kgVangstad
26
70 kgFranz
27
62 kgThalmann
29
61 kg
Weight (KG) →
Result →
82
54
1
29
# | Rider | Weight (KG) |
---|---|---|
1 | VAN DER POEL David | 75 |
2 | TEGGART Matthew | 63 |
3 | STEDMAN Maximilian | 54 |
4 | SCHELLING Ide | 66 |
5 | MORENO Adrià | 59 |
6 | BOUCHARD Geoffrey | 63 |
7 | RÜEGG Lukas | 66 |
9 | HIRSCHI Marc | 61 |
12 | MCNULTY Brandon | 69 |
13 | RUTSCH Jonas | 82 |
14 | O'LOUGHLIN Michael | 72 |
15 | GUILLONNET Adrien | 69 |
17 | MACIEJUK Filip | 78 |
18 | BOSTOCK Matthew | 69 |
19 | STORK Florian | 65 |
20 | PRONSKIY Vadim | 58 |
21 | VERMEERSCH Gianni | 68 |
22 | DONOVAN Mark | 70 |
24 | PIDCOCK Thomas | 58 |
25 | BANZER Gordian | 56 |
26 | VANGSTAD Andreas | 70 |
27 | FRANZ Marcel | 62 |
29 | THALMANN Roland | 61 |