Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 21
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
De Lie
1
78 kgUrianstad Bugge
3
61 kgUmba
4
58 kgTurner
5
74 kgHuby
6
56 kgTidball
8
70 kgReichenbach
9
64 kgAskey
10
75 kgBais
11
66 kgLimousin
12
55 kgBerrade
13
72 kgVan Eetvelt
15
63 kgMaas
17
70 kgJuneau
18
67 kgTræen
19
63 kgWatson
22
68 kgUhlig
23
69 kgMendez
24
57 kgDe Pooter
26
66 kg
1
78 kgUrianstad Bugge
3
61 kgUmba
4
58 kgTurner
5
74 kgHuby
6
56 kgTidball
8
70 kgReichenbach
9
64 kgAskey
10
75 kgBais
11
66 kgLimousin
12
55 kgBerrade
13
72 kgVan Eetvelt
15
63 kgMaas
17
70 kgJuneau
18
67 kgTræen
19
63 kgWatson
22
68 kgUhlig
23
69 kgMendez
24
57 kgDe Pooter
26
66 kg
Weight (KG) →
Result →
78
55
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | DE LIE Arnaud | 78 |
3 | URIANSTAD BUGGE Martin | 61 |
4 | UMBA Santiago | 58 |
5 | TURNER Ben | 74 |
6 | HUBY Antoine | 56 |
8 | TIDBALL William | 70 |
9 | REICHENBACH Sébastien | 64 |
10 | ASKEY Lewis | 75 |
11 | BAIS Mattia | 66 |
12 | LIMOUSIN Maxime | 55 |
13 | BERRADE Urko | 72 |
15 | VAN EETVELT Lennert | 63 |
17 | MAAS Jan | 70 |
18 | JUNEAU Francis | 67 |
19 | TRÆEN Torstein | 63 |
22 | WATSON Samuel | 68 |
23 | UHLIG Henri | 69 |
24 | MENDEZ Daniel Alejandro | 57 |
26 | DE POOTER Dries | 66 |