Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Guerin
1
64 kgBais
2
66 kgJuneau
3
67 kgReichenbach
4
64 kgUmba
5
58 kgWood
6
64 kgParra
7
55 kgCepeda
9
56 kgHeinschke
10
70 kgBárta
11
75 kgHuby
13
56 kgStüssi
14
68 kgBerrade
16
72 kgKluckers
18
71 kgVan Eetvelt
19
63 kgAskey
20
75 kgLimousin
21
55 kgMoreno
24
59 kgSleen
25
65 kgUrianstad Bugge
26
61 kgCulverwell
27
71 kg
1
64 kgBais
2
66 kgJuneau
3
67 kgReichenbach
4
64 kgUmba
5
58 kgWood
6
64 kgParra
7
55 kgCepeda
9
56 kgHeinschke
10
70 kgBárta
11
75 kgHuby
13
56 kgStüssi
14
68 kgBerrade
16
72 kgKluckers
18
71 kgVan Eetvelt
19
63 kgAskey
20
75 kgLimousin
21
55 kgMoreno
24
59 kgSleen
25
65 kgUrianstad Bugge
26
61 kgCulverwell
27
71 kg
Weight (KG) →
Result →
75
55
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | GUERIN Alexis | 64 |
2 | BAIS Mattia | 66 |
3 | JUNEAU Francis | 67 |
4 | REICHENBACH Sébastien | 64 |
5 | UMBA Santiago | 58 |
6 | WOOD Harrison | 64 |
7 | PARRA José Félix | 55 |
9 | CEPEDA Jefferson Alexander | 56 |
10 | HEINSCHKE Leon | 70 |
11 | BÁRTA Jan | 75 |
13 | HUBY Antoine | 56 |
14 | STÜSSI Colin | 68 |
16 | BERRADE Urko | 72 |
18 | KLUCKERS Arthur | 71 |
19 | VAN EETVELT Lennert | 63 |
20 | ASKEY Lewis | 75 |
21 | LIMOUSIN Maxime | 55 |
24 | MORENO Adrià | 59 |
25 | SLEEN Torjus | 65 |
26 | URIANSTAD BUGGE Martin | 61 |
27 | CULVERWELL Sam | 71 |