Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 20
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Van Eetvelt
1
63 kgThalmann
2
61 kgPickering
3
55 kgGloag
4
60 kgThompson
5
66 kgJegat
6
59 kgDinham
7
63 kgBoven
8
62 kgKretschy
9
63 kgSander Hansen
10
68 kgMaris
11
64 kgMariault
13
58 kgRüegg
14
66 kgMoreno
15
56 kgMeiler
16
65 kgNeuman
17
72 kgBoroš
18
69 kgSweeck
21
71 kgGrégoire
22
64 kgHayter
23
66 kgGarcía Pierna
26
58 kgPeter
27
63 kg
1
63 kgThalmann
2
61 kgPickering
3
55 kgGloag
4
60 kgThompson
5
66 kgJegat
6
59 kgDinham
7
63 kgBoven
8
62 kgKretschy
9
63 kgSander Hansen
10
68 kgMaris
11
64 kgMariault
13
58 kgRüegg
14
66 kgMoreno
15
56 kgMeiler
16
65 kgNeuman
17
72 kgBoroš
18
69 kgSweeck
21
71 kgGrégoire
22
64 kgHayter
23
66 kgGarcía Pierna
26
58 kgPeter
27
63 kg
Weight (KG) →
Result →
72
55
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VAN EETVELT Lennert | 63 |
2 | THALMANN Roland | 61 |
3 | PICKERING Finlay | 55 |
4 | GLOAG Thomas | 60 |
5 | THOMPSON Reuben | 66 |
6 | JEGAT Jordan | 59 |
7 | DINHAM Matthew | 63 |
8 | BOVEN Lars | 62 |
9 | KRETSCHY Moritz | 63 |
10 | SANDER HANSEN Marcus | 68 |
11 | MARIS Elias | 64 |
13 | MARIAULT Axel | 58 |
14 | RÜEGG Timon | 66 |
15 | MORENO Iván | 56 |
16 | MEILER Lukas | 65 |
17 | NEUMAN Dominik | 72 |
18 | BOROŠ Michael | 69 |
21 | SWEECK Laurens | 71 |
22 | GRÉGOIRE Romain | 64 |
23 | HAYTER Leo | 66 |
26 | GARCÍA PIERNA Carlos | 58 |
27 | PETER Jannis | 63 |