Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Skerl
1
80 kgVan Mechelen
2
78 kgBerwick
6
59 kgSimmons
7
68 kgHuby
9
56 kgVan de Wynkele
10
75 kgStüssi
11
68 kgLecerf
13
54 kgSvrček
15
66 kgSegaert
16
79 kgKärsten
18
75 kgKretschy
19
63 kgRaccagni Noviero
20
75 kgCzasa
21
70 kgGolliker
22
67 kgScott
23
73 kgvan den Broek
24
70 kgLeclainche
28
65 kgPlace
29
58 kgKramer
30
74 kgLecroq
33
70 kgMacKellar
36
69 kgKnecht
37
66 kg
1
80 kgVan Mechelen
2
78 kgBerwick
6
59 kgSimmons
7
68 kgHuby
9
56 kgVan de Wynkele
10
75 kgStüssi
11
68 kgLecerf
13
54 kgSvrček
15
66 kgSegaert
16
79 kgKärsten
18
75 kgKretschy
19
63 kgRaccagni Noviero
20
75 kgCzasa
21
70 kgGolliker
22
67 kgScott
23
73 kgvan den Broek
24
70 kgLeclainche
28
65 kgPlace
29
58 kgKramer
30
74 kgLecroq
33
70 kgMacKellar
36
69 kgKnecht
37
66 kg
Weight (KG) →
Result →
80
54
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | SKERL Daniel | 80 |
2 | VAN MECHELEN Vlad | 78 |
6 | BERWICK Sebastian | 59 |
7 | SIMMONS Colby | 68 |
9 | HUBY Antoine | 56 |
10 | VAN DE WYNKELE Lorenz | 75 |
11 | STÜSSI Colin | 68 |
13 | LECERF Junior | 54 |
15 | SVRČEK Martin | 66 |
16 | SEGAERT Alec | 79 |
18 | KÄRSTEN Moritz | 75 |
19 | KRETSCHY Moritz | 63 |
20 | RACCAGNI NOVIERO Andrea | 75 |
21 | CZASA Moritz | 70 |
22 | GOLLIKER Joshua | 67 |
23 | SCOTT Robert | 73 |
24 | VAN DEN BROEK Frank | 70 |
28 | LECLAINCHE Gwen | 65 |
29 | PLACE Maxence | 58 |
30 | KRAMER Jesse | 74 |
33 | LECROQ Jérémy | 70 |
36 | MACKELLAR Alastair | 69 |
37 | KNECHT Noah | 66 |