Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 1
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Nordhagen
1
59 kgDonnenwirth
2
63 kgRenard-Haquin
3
74 kgDelettre
5
62 kgCapron
6
59 kgDorn
7
74 kgBasset
8
69 kgSimmons
9
68 kgThornley
12
76 kgGuerin
14
64 kgVan Hautegem
15
64 kgRouland
16
55 kgRolland
17
59 kgJenner
23
64 kgSutton
24
68 kgSavino
26
70 kgHobbs
27
67 kgBisiaux
29
58 kgEpis
31
64 kgShmidt
32
76 kgToneatti
33
65 kgVan Niekerk
35
64 kgLucca
37
74 kg
1
59 kgDonnenwirth
2
63 kgRenard-Haquin
3
74 kgDelettre
5
62 kgCapron
6
59 kgDorn
7
74 kgBasset
8
69 kgSimmons
9
68 kgThornley
12
76 kgGuerin
14
64 kgVan Hautegem
15
64 kgRouland
16
55 kgRolland
17
59 kgJenner
23
64 kgSutton
24
68 kgSavino
26
70 kgHobbs
27
67 kgBisiaux
29
58 kgEpis
31
64 kgShmidt
32
76 kgToneatti
33
65 kgVan Niekerk
35
64 kgLucca
37
74 kg
Weight (KG) →
Result →
76
55
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | NORDHAGEN Jørgen | 59 |
2 | DONNENWIRTH Tom | 63 |
3 | RENARD-HAQUIN Henri-François | 74 |
5 | DELETTRE Alexandre | 62 |
6 | CAPRON Rémi | 59 |
7 | DORN Vinzent | 74 |
8 | BASSET Pierre-Henry | 69 |
9 | SIMMONS Colby | 68 |
12 | THORNLEY Callum | 76 |
14 | GUERIN Alexis | 64 |
15 | VAN HAUTEGEM Leander | 64 |
16 | ROULAND Louis | 55 |
17 | ROLLAND Brieuc | 59 |
23 | JENNER Samuel | 64 |
24 | SUTTON Louis | 68 |
26 | SAVINO Federico | 70 |
27 | HOBBS Noah | 67 |
29 | BISIAUX Léo | 58 |
31 | EPIS Giosuè | 64 |
32 | SHMIDT Artem | 76 |
33 | TONEATTI Davide | 65 |
35 | VAN NIEKERK Morné | 64 |
37 | LUCCA Riccardo | 74 |