Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 6
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Banaszek
1
75 kgHuitema
4
66 kgvan der Horst
5
62 kgColeman
6
70 kgLarsson
7
73 kgBakker
8
79 kgMurias
9
65 kgLašinis
11
69 kgWiśniewski
12
68 kgInkster
16
73 kgMaślak
17
73 kgGórak
18
72 kgVisser
20
75 kgDabski
21
70 kgKmieliauskas
22
68 kgDuckert
23
68 kgPaluta
25
65 kgBanaszek
28
75 kg
1
75 kgHuitema
4
66 kgvan der Horst
5
62 kgColeman
6
70 kgLarsson
7
73 kgBakker
8
79 kgMurias
9
65 kgLašinis
11
69 kgWiśniewski
12
68 kgInkster
16
73 kgMaślak
17
73 kgGórak
18
72 kgVisser
20
75 kgDabski
21
70 kgKmieliauskas
22
68 kgDuckert
23
68 kgPaluta
25
65 kgBanaszek
28
75 kg
Weight (KG) →
Result →
79
62
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | BANASZEK Norbert | 75 |
4 | HUITEMA Jasper | 66 |
5 | VAN DER HORST Dennis | 62 |
6 | COLEMAN Zak | 70 |
7 | LARSSON David | 73 |
8 | BAKKER Björn | 79 |
9 | MURIAS Jakub | 65 |
11 | LAŠINIS Venantas | 69 |
12 | WIŚNIEWSKI Szymon | 68 |
16 | INKSTER Eric | 73 |
17 | MAŚLAK Piotr | 73 |
18 | GÓRAK Dominik | 72 |
20 | VISSER Guillaume | 75 |
21 | DABSKI Patryk | 70 |
22 | KMIELIAUSKAS Rokas | 68 |
23 | DUCKERT Roman | 68 |
25 | PALUTA Michał | 65 |
28 | BANASZEK Alan | 75 |