Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Banaszek
2
75 kgHuitema
3
66 kgColeman
4
70 kgvan der Horst
6
62 kgMurias
7
65 kgVisser
8
75 kgInkster
9
73 kgBanaszek
10
75 kgMaślak
11
73 kgLarsson
12
73 kgBakker
13
79 kgPaluta
14
65 kgWiśniewski
17
68 kgLašinis
18
69 kgLychou
19
78 kgPawlak
21
81 kgGórak
23
72 kgDuckert
25
68 kgKmieliauskas
26
68 kgDabski
28
70 kg
2
75 kgHuitema
3
66 kgColeman
4
70 kgvan der Horst
6
62 kgMurias
7
65 kgVisser
8
75 kgInkster
9
73 kgBanaszek
10
75 kgMaślak
11
73 kgLarsson
12
73 kgBakker
13
79 kgPaluta
14
65 kgWiśniewski
17
68 kgLašinis
18
69 kgLychou
19
78 kgPawlak
21
81 kgGórak
23
72 kgDuckert
25
68 kgKmieliauskas
26
68 kgDabski
28
70 kg
Weight (KG) →
Result →
81
62
2
28
# | Rider | Weight (KG) |
---|---|---|
2 | BANASZEK Norbert | 75 |
3 | HUITEMA Jasper | 66 |
4 | COLEMAN Zak | 70 |
6 | VAN DER HORST Dennis | 62 |
7 | MURIAS Jakub | 65 |
8 | VISSER Guillaume | 75 |
9 | INKSTER Eric | 73 |
10 | BANASZEK Alan | 75 |
11 | MAŚLAK Piotr | 73 |
12 | LARSSON David | 73 |
13 | BAKKER Björn | 79 |
14 | PALUTA Michał | 65 |
17 | WIŚNIEWSKI Szymon | 68 |
18 | LAŠINIS Venantas | 69 |
19 | LYCHOU Viktor | 78 |
21 | PAWLAK Tobiasz | 81 |
23 | GÓRAK Dominik | 72 |
25 | DUCKERT Roman | 68 |
26 | KMIELIAUSKAS Rokas | 68 |
28 | DABSKI Patryk | 70 |