Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Banaszek
1
75 kgVoltr
4
75 kgMaślak
5
73 kgKaczmarek
7
66 kgBernas
8
77 kgFrątczak
12
70 kgSowiński
13
63 kgStaniszewski
14
77 kgBanaszek
15
75 kgStosz
16
70 kgBudziński
17
69 kgBárta
19
79 kgCarstensen
20
69 kgBriese
22
66 kgBogusławski
23
77 kgTurek
24
72 kgŘeha
26
72 kgLeu
29
80 kgDabski
30
70 kgFilutás
33
68 kgMünzer
35
71 kg
1
75 kgVoltr
4
75 kgMaślak
5
73 kgKaczmarek
7
66 kgBernas
8
77 kgFrątczak
12
70 kgSowiński
13
63 kgStaniszewski
14
77 kgBanaszek
15
75 kgStosz
16
70 kgBudziński
17
69 kgBárta
19
79 kgCarstensen
20
69 kgBriese
22
66 kgBogusławski
23
77 kgTurek
24
72 kgŘeha
26
72 kgLeu
29
80 kgDabski
30
70 kgFilutás
33
68 kgMünzer
35
71 kg
Weight (KG) →
Result →
80
63
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | BANASZEK Alan | 75 |
4 | VOLTR Martin | 75 |
5 | MAŚLAK Piotr | 73 |
7 | KACZMAREK Jakub | 66 |
8 | BERNAS Paweł | 77 |
12 | FRĄTCZAK Radosław | 70 |
13 | SOWIŃSKI Artur | 63 |
14 | STANISZEWSKI Daniel | 77 |
15 | BANASZEK Norbert | 75 |
16 | STOSZ Patryk | 70 |
17 | BUDZIŃSKI Tomasz | 69 |
19 | BÁRTA Tomáš | 79 |
20 | CARSTENSEN Lucas | 69 |
22 | BRIESE Max | 66 |
23 | BOGUSŁAWSKI Marceli | 77 |
24 | TUREK Daniel | 72 |
26 | ŘEHA Filip | 72 |
29 | LEU Richard | 80 |
30 | DABSKI Patryk | 70 |
33 | FILUTÁS Viktor | 68 |
35 | MÜNZER Jan | 71 |