Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 64
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Banaszek
1
75 kgVoltr
6
75 kgBogusławski
8
77 kgKaczmarek
9
66 kgBárta
10
79 kgStaniszewski
11
77 kgMaślak
13
73 kgFrątczak
15
70 kgBernas
16
77 kgBudziński
19
69 kgSowiński
20
63 kgBanaszek
21
75 kgStosz
22
70 kgCarstensen
23
69 kgBriese
24
66 kgvan der Horst
25
62 kgTurek
26
72 kgŘeha
27
72 kgMünzer
31
71 kgLeu
32
80 kgDabski
34
70 kgFilutás
37
68 kg
1
75 kgVoltr
6
75 kgBogusławski
8
77 kgKaczmarek
9
66 kgBárta
10
79 kgStaniszewski
11
77 kgMaślak
13
73 kgFrątczak
15
70 kgBernas
16
77 kgBudziński
19
69 kgSowiński
20
63 kgBanaszek
21
75 kgStosz
22
70 kgCarstensen
23
69 kgBriese
24
66 kgvan der Horst
25
62 kgTurek
26
72 kgŘeha
27
72 kgMünzer
31
71 kgLeu
32
80 kgDabski
34
70 kgFilutás
37
68 kg
Weight (KG) →
Result →
80
62
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | BANASZEK Alan | 75 |
6 | VOLTR Martin | 75 |
8 | BOGUSŁAWSKI Marceli | 77 |
9 | KACZMAREK Jakub | 66 |
10 | BÁRTA Tomáš | 79 |
11 | STANISZEWSKI Daniel | 77 |
13 | MAŚLAK Piotr | 73 |
15 | FRĄTCZAK Radosław | 70 |
16 | BERNAS Paweł | 77 |
19 | BUDZIŃSKI Tomasz | 69 |
20 | SOWIŃSKI Artur | 63 |
21 | BANASZEK Norbert | 75 |
22 | STOSZ Patryk | 70 |
23 | CARSTENSEN Lucas | 69 |
24 | BRIESE Max | 66 |
25 | VAN DER HORST Dennis | 62 |
26 | TUREK Daniel | 72 |
27 | ŘEHA Filip | 72 |
31 | MÜNZER Jan | 71 |
32 | LEU Richard | 80 |
34 | DABSKI Patryk | 70 |
37 | FILUTÁS Viktor | 68 |