Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Schlegel
1
72 kgCuadros
2
67 kgGarcía Cortina
4
77 kgSisr
6
72 kgTurek
8
72 kgAasvold
10
61 kgMolly
12
61 kgBerger
14
66 kgKuzmin
15
66 kgFranz
16
62 kgEriksson
18
64 kgSoballa
19
71 kgKessler
22
78 kgBaška
25
74 kgSipos
26
65 kgBalkan
27
64 kgSuchev
28
68 kgVdovin
30
62.5 kgSchlemmer
31
64 kgKukrle
32
73 kg
1
72 kgCuadros
2
67 kgGarcía Cortina
4
77 kgSisr
6
72 kgTurek
8
72 kgAasvold
10
61 kgMolly
12
61 kgBerger
14
66 kgKuzmin
15
66 kgFranz
16
62 kgEriksson
18
64 kgSoballa
19
71 kgKessler
22
78 kgBaška
25
74 kgSipos
26
65 kgBalkan
27
64 kgSuchev
28
68 kgVdovin
30
62.5 kgSchlemmer
31
64 kgKukrle
32
73 kg
Weight (KG) →
Result →
78
61
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | SCHLEGEL Michal | 72 |
2 | CUADROS Álvaro | 67 |
4 | GARCÍA CORTINA Iván | 77 |
6 | SISR František | 72 |
8 | TUREK Daniel | 72 |
10 | AASVOLD Kristian | 61 |
12 | MOLLY Kenny | 61 |
14 | BERGER Leon | 66 |
15 | KUZMIN Anton | 66 |
16 | FRANZ Marcel | 62 |
18 | ERIKSSON Lucas | 64 |
19 | SOBALLA Carl | 71 |
22 | KESSLER Robert | 78 |
25 | BAŠKA Erik | 74 |
26 | SIPOS Marek | 65 |
27 | BALKAN Serkan | 64 |
28 | SUCHEV Mario | 68 |
30 | VDOVIN Sergey | 62.5 |
31 | SCHLEMMER Lukas | 64 |
32 | KUKRLE Michael | 73 |