Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Zieliński
1
61 kgJaniszewski
3
65 kgEikeland
4
68 kgMatysiak
6
71 kgPodlaski
7
68 kgAasvold
8
61 kgCieślik
10
65 kgRutkiewicz
12
66 kgLarsén
13
82 kgNeuman
14
72 kgStöhr
15
72 kgBernas
16
77 kgKomar
17
73 kgÖrken
18
69 kgKalojíros
19
68 kgAniołkowski
20
68 kgMagnusson
23
71 kgWetterhall
24
70 kgPolnický
25
68 kg
1
61 kgJaniszewski
3
65 kgEikeland
4
68 kgMatysiak
6
71 kgPodlaski
7
68 kgAasvold
8
61 kgCieślik
10
65 kgRutkiewicz
12
66 kgLarsén
13
82 kgNeuman
14
72 kgStöhr
15
72 kgBernas
16
77 kgKomar
17
73 kgÖrken
18
69 kgKalojíros
19
68 kgAniołkowski
20
68 kgMagnusson
23
71 kgWetterhall
24
70 kgPolnický
25
68 kg
Weight (KG) →
Result →
82
61
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZIELIńSKI Kamil | 61 |
3 | JANISZEWSKI Sylwester | 65 |
4 | EIKELAND Ken Levi | 68 |
6 | MATYSIAK Bartłomiej | 71 |
7 | PODLASKI Michał | 68 |
8 | AASVOLD Kristian | 61 |
10 | CIEŚLIK Paweł | 65 |
12 | RUTKIEWICZ Marek | 66 |
13 | LARSÉN Richard | 82 |
14 | NEUMAN Dominik | 72 |
15 | STÖHR Ján | 72 |
16 | BERNAS Paweł | 77 |
17 | KOMAR Mateusz | 73 |
18 | ÖRKEN Ahmet | 69 |
19 | KALOJÍROS Tomáš | 68 |
20 | ANIOŁKOWSKI Stanisław | 68 |
23 | MAGNUSSON Kim | 71 |
24 | WETTERHALL Alexander | 70 |
25 | POLNICKÝ Jiří | 68 |