Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 32
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Nilsson
2
58 kgThomas
3
58 kgRitter
4
59 kgGarcía
5
56 kgNeylan
7
52 kgPoidevin
8
56 kgSolovey
9
56 kgStephens
11
55 kgHanselmann
12
55 kgValsecchi
15
58 kgPintar
18
56 kgRooijakkers
23
58 kgJackson
30
63 kgHammes
35
54 kgChabbey
36
52 kgSomrat
60
56 kgHalbwachs
61
62 kgNontasin
72
58 kgNuntana
75
55 kg
2
58 kgThomas
3
58 kgRitter
4
59 kgGarcía
5
56 kgNeylan
7
52 kgPoidevin
8
56 kgSolovey
9
56 kgStephens
11
55 kgHanselmann
12
55 kgValsecchi
15
58 kgPintar
18
56 kgRooijakkers
23
58 kgJackson
30
63 kgHammes
35
54 kgChabbey
36
52 kgSomrat
60
56 kgHalbwachs
61
62 kgNontasin
72
58 kgNuntana
75
55 kg
Weight (KG) →
Result →
63
52
2
75
# | Rider | Weight (KG) |
---|---|---|
2 | NILSSON Hanna | 58 |
3 | THOMAS Leah | 58 |
4 | RITTER Martina | 59 |
5 | GARCÍA Mavi | 56 |
7 | NEYLAN Rachel | 52 |
8 | POIDEVIN Sara | 56 |
9 | SOLOVEY Hanna | 56 |
11 | STEPHENS Lauren | 55 |
12 | HANSELMANN Nicole | 55 |
15 | VALSECCHI Silvia | 58 |
18 | PINTAR Urška | 56 |
23 | ROOIJAKKERS Pauliena | 58 |
30 | JACKSON Alison | 63 |
35 | HAMMES Kathrin | 54 |
36 | CHABBEY Elise | 52 |
60 | SOMRAT Phetdarin | 56 |
61 | HALBWACHS Aurelie | 62 |
72 | NONTASIN Chanpeng | 58 |
75 | NUNTANA Supaksorn | 55 |