Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Cavalli
1
53 kgBaril
4
56 kgMalcotti
7
52 kgZanardi
10
56 kgDoebel-Hickok
12
51 kgAdegeest
16
57 kgRuiz Pérez
24
56 kgRuiz Pérez
25
55 kgFranz
26
52 kgVan Dam
27
58 kgWilliams
37
66 kgAllin
38
58 kgCasagranda
44
58 kgPowless
47
59 kgDrummond
49
61 kgPeñuela
51
53 kgYonamine
53
51 kgPintar
55
56 kgPikulik
65
54 kgJimenez Martinez
75
53 kg
1
53 kgBaril
4
56 kgMalcotti
7
52 kgZanardi
10
56 kgDoebel-Hickok
12
51 kgAdegeest
16
57 kgRuiz Pérez
24
56 kgRuiz Pérez
25
55 kgFranz
26
52 kgVan Dam
27
58 kgWilliams
37
66 kgAllin
38
58 kgCasagranda
44
58 kgPowless
47
59 kgDrummond
49
61 kgPeñuela
51
53 kgYonamine
53
51 kgPintar
55
56 kgPikulik
65
54 kgJimenez Martinez
75
53 kg
Weight (KG) →
Result →
66
51
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | CAVALLI Marta | 53 |
4 | BARIL Olivia | 56 |
7 | MALCOTTI Barbara | 52 |
10 | ZANARDI Silvia | 56 |
12 | DOEBEL-HICKOK Krista | 51 |
16 | ADEGEEST Loes | 57 |
24 | RUIZ PÉREZ Lucía | 56 |
25 | RUIZ PÉREZ Laura | 55 |
26 | FRANZ Heidi | 52 |
27 | VAN DAM Sarah | 58 |
37 | WILLIAMS Lily | 66 |
38 | ALLIN Pauline | 58 |
44 | CASAGRANDA Andrea | 58 |
47 | POWLESS Shayna | 59 |
49 | DRUMMOND Michaela | 61 |
51 | PEÑUELA Diana | 53 |
53 | YONAMINE Eri | 51 |
55 | PINTAR Urška | 56 |
65 | PIKULIK Daria | 54 |
75 | JIMENEZ MARTINEZ Maria del Pilar | 53 |