Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 29
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Penhoët
1
64 kgHeiduk
2
70 kgKielich
3
73 kgTurner
4
74 kgPage
5
71 kgVauquelin
6
69 kgPithie
7
74 kgAvadanian
8
66 kgHealy
9
65 kgHendrikx
12
61 kgGloag
14
60 kgToumire
15
69 kgÄrm
16
75 kgLunder
17
78 kgPaleni
18
65 kgCulverwell
22
71 kgVogel
24
80 kgPidcock
25
57 kgLamperti
27
74 kgBelmans
35
72 kgKluckers
36
71 kgAmann
38
76 kgGudmestad
40
82 kg
1
64 kgHeiduk
2
70 kgKielich
3
73 kgTurner
4
74 kgPage
5
71 kgVauquelin
6
69 kgPithie
7
74 kgAvadanian
8
66 kgHealy
9
65 kgHendrikx
12
61 kgGloag
14
60 kgToumire
15
69 kgÄrm
16
75 kgLunder
17
78 kgPaleni
18
65 kgCulverwell
22
71 kgVogel
24
80 kgPidcock
25
57 kgLamperti
27
74 kgBelmans
35
72 kgKluckers
36
71 kgAmann
38
76 kgGudmestad
40
82 kg
Weight (KG) →
Result →
82
57
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | PENHOËT Paul | 64 |
2 | HEIDUK Kim | 70 |
3 | KIELICH Timo | 73 |
4 | TURNER Ben | 74 |
5 | PAGE Hugo | 71 |
6 | VAUQUELIN Kévin | 69 |
7 | PITHIE Laurence | 74 |
8 | AVADANIAN Lucas | 66 |
9 | HEALY Ben | 65 |
12 | HENDRIKX Mees | 61 |
14 | GLOAG Thomas | 60 |
15 | TOUMIRE Hugo | 69 |
16 | ÄRM Rait | 75 |
17 | LUNDER Eirik | 78 |
18 | PALENI Enzo | 65 |
22 | CULVERWELL Sam | 71 |
24 | VOGEL Alex | 80 |
25 | PIDCOCK Joseph | 57 |
27 | LAMPERTI Luke | 74 |
35 | BELMANS Lennert | 72 |
36 | KLUCKERS Arthur | 71 |
38 | AMANN Dominik | 76 |
40 | GUDMESTAD Tord | 82 |