Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Tabellion
1
72 kgLeroux
2
79 kgMurias
4
65 kgCortjens
6
76 kgChristensen
7
63 kgVandebosch
8
69 kgChainel
13
69 kgLe Berre
14
68 kgLevasseur
15
74 kgLeclainche
16
65 kgVahtra
17
85 kgHonig
19
61 kgBourgoyne
22
66 kgConstantin
23
66 kgStosz
26
70 kgGautherat
27
70 kgJenner
28
64 kg
1
72 kgLeroux
2
79 kgMurias
4
65 kgCortjens
6
76 kgChristensen
7
63 kgVandebosch
8
69 kgChainel
13
69 kgLe Berre
14
68 kgLevasseur
15
74 kgLeclainche
16
65 kgVahtra
17
85 kgHonig
19
61 kgBourgoyne
22
66 kgConstantin
23
66 kgStosz
26
70 kgGautherat
27
70 kgJenner
28
64 kg
Weight (KG) →
Result →
85
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | TABELLION Valentin | 72 |
2 | LEROUX Samuel | 79 |
4 | MURIAS Jakub | 65 |
6 | CORTJENS Ryan | 76 |
7 | CHRISTENSEN Ryan | 63 |
8 | VANDEBOSCH Toon | 69 |
13 | CHAINEL Steve | 69 |
14 | LE BERRE Mathis | 68 |
15 | LEVASSEUR Jordan | 74 |
16 | LECLAINCHE Gwen | 65 |
17 | VAHTRA Norman | 85 |
19 | HONIG Reinier | 61 |
22 | BOURGOYNE Lucas | 66 |
23 | CONSTANTIN Baptiste | 66 |
26 | STOSZ Patryk | 70 |
27 | GAUTHERAT Pierre | 70 |
28 | JENNER Samuel | 64 |