Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Le Berre
2
68 kgBourgoyne
3
66 kgVandeputte
4
73 kgThomas
6
61 kgGeorge
8
78 kgVerstrynge
9
69 kgGautherat
10
70 kgCortjens
11
76 kgLeclainche
12
65 kgMainguenaud
13
63 kgRenard-Haquin
16
74 kgHendrikx
21
61 kgBogna
22
66 kgCharlton
24
82 kgDevroute
26
71 kgRichard
37
55 kgJolly
39
70 kg
2
68 kgBourgoyne
3
66 kgVandeputte
4
73 kgThomas
6
61 kgGeorge
8
78 kgVerstrynge
9
69 kgGautherat
10
70 kgCortjens
11
76 kgLeclainche
12
65 kgMainguenaud
13
63 kgRenard-Haquin
16
74 kgHendrikx
21
61 kgBogna
22
66 kgCharlton
24
82 kgDevroute
26
71 kgRichard
37
55 kgJolly
39
70 kg
Weight (KG) →
Result →
82
55
2
39
# | Rider | Weight (KG) |
---|---|---|
2 | LE BERRE Mathis | 68 |
3 | BOURGOYNE Lucas | 66 |
4 | VANDEPUTTE Niels | 73 |
6 | THOMAS Théo | 61 |
8 | GEORGE Alfred | 78 |
9 | VERSTRYNGE Emiel | 69 |
10 | GAUTHERAT Pierre | 70 |
11 | CORTJENS Ryan | 76 |
12 | LECLAINCHE Gwen | 65 |
13 | MAINGUENAUD Tom | 63 |
16 | RENARD-HAQUIN Henri-François | 74 |
21 | HENDRIKX Mees | 61 |
22 | BOGNA Alex | 66 |
24 | CHARLTON Josh | 82 |
26 | DEVROUTE Corentin | 71 |
37 | RICHARD Maxime | 55 |
39 | JOLLY Maxime | 70 |