Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 15.8 * weight - 961
This means that on average for every extra kilogram weight a rider loses 15.8 positions in the result.
Dejaegher
2
72 kgIsidore
3
67 kgLeroux
4
79 kgTabellion
5
72 kgBudziński
6
70 kgDauphin
7
70 kgCardis
9
72 kgÅrnes
11
80 kgGougeard
15
70 kgBanaszek
16
75 kgLeveau
17
67 kgVanthourenhout
18
62 kgToudal
19
72 kgDelacroix
20
70 kgAerts
21
76 kgÄrm
991
75 kgBaguelin
991
72 kgMorin
991
74 kg
2
72 kgIsidore
3
67 kgLeroux
4
79 kgTabellion
5
72 kgBudziński
6
70 kgDauphin
7
70 kgCardis
9
72 kgÅrnes
11
80 kgGougeard
15
70 kgBanaszek
16
75 kgLeveau
17
67 kgVanthourenhout
18
62 kgToudal
19
72 kgDelacroix
20
70 kgAerts
21
76 kgÄrm
991
75 kgBaguelin
991
72 kgMorin
991
74 kg
Weight (KG) →
Result →
80
62
2
991
# | Rider | Weight (KG) |
---|---|---|
2 | DEJAEGHER Jasper | 72 |
3 | ISIDORE Noa | 67 |
4 | LEROUX Samuel | 79 |
5 | TABELLION Valentin | 72 |
6 | BUDZIŃSKI Marcin | 70 |
7 | DAUPHIN Florian | 70 |
9 | CARDIS Romain | 72 |
11 | ÅRNES Daniel | 80 |
15 | GOUGEARD Alexis | 70 |
16 | BANASZEK Norbert | 75 |
17 | LEVEAU Jérémy | 67 |
18 | VANTHOURENHOUT Michael | 62 |
19 | TOUDAL Emil | 72 |
20 | DELACROIX Théo | 70 |
21 | AERTS Thijs | 76 |
991 | ÄRM Rait | 75 |
991 | BAGUELIN Jocelyn | 72 |
991 | MORIN Emmanuel | 74 |