Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight + 155
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Dejaegher
1
72 kgBudziński
3
70 kgIsidore
4
67 kgLeroux
5
79 kgTabellion
6
72 kgMainguenaud
7
63 kgCardis
8
72 kgDauphin
9
70 kgÅrnes
13
80 kgLeveau
14
67 kgGougeard
15
70 kgPetruš
17
64 kgBanaszek
19
75 kgVanthourenhout
20
62 kgMaurelet
21
56 kgToudal
22
72 kgDelacroix
23
70 kgAerts
24
76 kgÄrm
991
75 kgBaguelin
991
72 kgMetcalfe
991
59 kgMorin
991
74 kg
1
72 kgBudziński
3
70 kgIsidore
4
67 kgLeroux
5
79 kgTabellion
6
72 kgMainguenaud
7
63 kgCardis
8
72 kgDauphin
9
70 kgÅrnes
13
80 kgLeveau
14
67 kgGougeard
15
70 kgPetruš
17
64 kgBanaszek
19
75 kgVanthourenhout
20
62 kgMaurelet
21
56 kgToudal
22
72 kgDelacroix
23
70 kgAerts
24
76 kgÄrm
991
75 kgBaguelin
991
72 kgMetcalfe
991
59 kgMorin
991
74 kg
Weight (KG) →
Result →
80
56
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | DEJAEGHER Jasper | 72 |
3 | BUDZIŃSKI Marcin | 70 |
4 | ISIDORE Noa | 67 |
5 | LEROUX Samuel | 79 |
6 | TABELLION Valentin | 72 |
7 | MAINGUENAUD Tom | 63 |
8 | CARDIS Romain | 72 |
9 | DAUPHIN Florian | 70 |
13 | ÅRNES Daniel | 80 |
14 | LEVEAU Jérémy | 67 |
15 | GOUGEARD Alexis | 70 |
17 | PETRUŠ Jiří | 64 |
19 | BANASZEK Norbert | 75 |
20 | VANTHOURENHOUT Michael | 62 |
21 | MAURELET Flavien | 56 |
22 | TOUDAL Emil | 72 |
23 | DELACROIX Théo | 70 |
24 | AERTS Thijs | 76 |
991 | ÄRM Rait | 75 |
991 | BAGUELIN Jocelyn | 72 |
991 | METCALFE Ben | 59 |
991 | MORIN Emmanuel | 74 |