Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 42
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
L'Hote
1
67 kgTabellion
2
72 kgDelacroix
3
70 kgDauphin
6
70 kgCardis
8
72 kgCapra
9
73 kgHobbs
10
67 kgDe Schuyteneer
13
74 kgVeistroffer
14
73 kgÄrm
17
75 kgLecamus-Lambert
18
79 kgRitzinger
19
80 kgHue
22
64 kgNielsen
23
69 kgLecroq
24
70 kgJanssen
25
67 kgEpis
27
64 kgGuillon
28
66 kg
1
67 kgTabellion
2
72 kgDelacroix
3
70 kgDauphin
6
70 kgCardis
8
72 kgCapra
9
73 kgHobbs
10
67 kgDe Schuyteneer
13
74 kgVeistroffer
14
73 kgÄrm
17
75 kgLecamus-Lambert
18
79 kgRitzinger
19
80 kgHue
22
64 kgNielsen
23
69 kgLecroq
24
70 kgJanssen
25
67 kgEpis
27
64 kgGuillon
28
66 kg
Weight (KG) →
Result →
80
64
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | L'HOTE Antoine | 67 |
2 | TABELLION Valentin | 72 |
3 | DELACROIX Théo | 70 |
6 | DAUPHIN Florian | 70 |
8 | CARDIS Romain | 72 |
9 | CAPRA Thomas | 73 |
10 | HOBBS Noah | 67 |
13 | DE SCHUYTENEER Steffen | 74 |
14 | VEISTROFFER Baptiste | 73 |
17 | ÄRM Rait | 75 |
18 | LECAMUS-LAMBERT Florentin | 79 |
19 | RITZINGER Felix | 80 |
22 | HUE Antoine | 64 |
23 | NIELSEN Magnus Lorents | 69 |
24 | LECROQ Jérémy | 70 |
25 | JANSSEN Lucas | 67 |
27 | EPIS Giosuè | 64 |
28 | GUILLON Célestin | 66 |