Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 133
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
Fraser
1
71 kgFörster
2
83 kgAggiano
5
63 kgLupeikis
11
80 kgCooke
13
75 kgGilbert
14
73 kgSinkewitz
16
63 kgChmielewski
19
72 kgŁukaszewicz
20
63 kgRollin
26
83 kgRatti
30
64 kgWohlberg
36
63 kgWacker
44
65 kgPiątek
49
71 kgHegreberg
50
72 kgVogels
51
75 kgBarry
63
72 kgZarate
75
70 kgMcLeod
77
66 kgTuft
93
77 kgParisien
94
64 kgPaumier
100
57 kgCappelle
106
71 kg
1
71 kgFörster
2
83 kgAggiano
5
63 kgLupeikis
11
80 kgCooke
13
75 kgGilbert
14
73 kgSinkewitz
16
63 kgChmielewski
19
72 kgŁukaszewicz
20
63 kgRollin
26
83 kgRatti
30
64 kgWohlberg
36
63 kgWacker
44
65 kgPiątek
49
71 kgHegreberg
50
72 kgVogels
51
75 kgBarry
63
72 kgZarate
75
70 kgMcLeod
77
66 kgTuft
93
77 kgParisien
94
64 kgPaumier
100
57 kgCappelle
106
71 kg
Weight (KG) →
Result →
83
57
1
106
# | Rider | Weight (KG) |
---|---|---|
1 | FRASER Gordon | 71 |
2 | FÖRSTER Robert | 83 |
5 | AGGIANO Elio | 63 |
11 | LUPEIKIS Remigius | 80 |
13 | COOKE Baden | 75 |
14 | GILBERT Martin | 73 |
16 | SINKEWITZ Patrik | 63 |
19 | CHMIELEWSKI Piotr | 72 |
20 | ŁUKASZEWICZ Czesław | 63 |
26 | ROLLIN Dominique | 83 |
30 | RATTI Eddy | 64 |
36 | WOHLBERG Eric | 63 |
44 | WACKER Eugen | 65 |
49 | PIĄTEK Zbigniew | 71 |
50 | HEGREBERG Morten | 72 |
51 | VOGELS Henk | 75 |
63 | BARRY Michael | 72 |
75 | ZARATE Jesús | 70 |
77 | MCLEOD Ian | 66 |
93 | TUFT Svein | 77 |
94 | PARISIEN François | 64 |
100 | PAUMIER Laurent | 57 |
106 | CAPPELLE Andy | 71 |